【题目】已知抛物线焦点为,为抛物线上在第一象限内一点,为原点,面积为.
(1)求抛物线方程;
(2)过点作两条直线分别交抛物线于异于点的两点,,且两直线斜率之和为,
(i)若为常数,求证直线过定点;
(ii)当改变时,求(i)中距离最近的点的坐标.
【答案】(1);(2)( i )见解析;(ii)
【解析】
(1)先将代入抛物线的方程,根据三角形面积,求出,即可得出抛物线方程;
(2)(i)先设直线不存在时没有两个交点,不成立),,联立直线与抛物线方程,根据韦达定理,得到,表示出,化简整理,得到,代入直线方程,即可得出结果;
(ii)由(i)得到定点在直线上,易得,距离最近时为,进而可求出结果.
(1)由题意,将代入抛物线得,
所以面积为,
,解得,
所以抛物线方程为;
(2)(i)由题意,设直线不存在时没有两个交点,不成立),,
联立得,所以,
所以,
则,
从而,
带入得直线
所以过定点
(ii)由(i),令,,所以,
即定点在直线上,
因为过点的直线与垂直,
由得,
所以距离最近时为.
科目:高中数学 来源: 题型:
【题目】如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上.
(1)求p的值及抛物线的准线方程 ;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面为梯形, 底面, , , , .
(1)求证:平面 平面;
(2)设为上的一点,满足,若直线与平面所成角的正切值为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若给定椭圆和点,则称直线为椭圆C的“伴随直线”.
(1)若在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由;
(2)命题:“若点在椭圆C的外部,则直线与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由;
(3)若在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交于M点(异于A、B),设,问是否为定值?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列的首项,数列前项和记为,前项积记为.
(1) 若,求等比数列的公比;
(2) 在(1)的条件下,判断与的大小;并求为何值时,取得最大值;
(3) 在(1)的条件下,证明:若数列中的任意相邻三项按从小到大排列,则总可以使其成等差数列;若所有这些等差数列的公差按从小到大的顺序依次记为,则数列为等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,为坐标原点,C、D两点的坐标为,曲线上的动点P满足.又曲线上的点A、B满足.
(1)求曲线的方程;
(2)若点A在第一象限,且,求点A的坐标;
(3)求证:原点到直线AB的距离为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com