精英家教网 > 高中数学 > 题目详情
22、已知三棱锥P-ABC中,PA=PB,CB⊥平面PAB,M为PC的中点,AN=3NB.
求证:MN⊥AB.
分析:证明直线与直线垂直可将其中一条直线放到平面内,平面的选择可借助题目中已知的一些垂直关系取寻找,有中点的问题可利用中位线性质解决.
解答:解:如图:
取直线AB,AC的中点分别为D、E,
再取BD、EC的中点分别为N、F,
连接PD、PE、DE、MF、NF,
由PA=PB知PD⊥AB,D、E为直线AB,AC的中点,DE∥BC而BC⊥平面PAB
∴DE⊥AB,而PD∩DE=D,
∴AB⊥平面PDE,而NF∥DE,MF∥PE 知平面PDE∥平面MNF,
∴AB⊥平面MNF,MN?平面MNF∴MN⊥AB.
点评:本题主要考查了直线与直线的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且PA=2
3
,PB=3,PC=2外接球的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.
(Ⅰ)求证:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥P-ABC,∠ACB=90°,CB=4,AB=20,D为AB中点,M为PB的中点,且△PDB是正三角形,PA⊥PC.
(I)求证:DM∥平面PAC;
(II)求证:平面PAC⊥平面ABC;
(Ⅲ)求三棱锥M-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•河西区二模)如图,已知三棱锥P-ABC中,PA⊥面ABC,其中正视图为Rt△PAC,AC=2
6
,PA=4,俯视图也为直角三角形,另一直角边长为2
2

(Ⅰ)画出侧视图并求侧视图的面积;
(Ⅱ)证明面PAC⊥面PAB;
(Ⅲ)求直线PC与底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•黄浦区二模)已知三棱锥P-ABC的棱长都是2,点D是棱AP上不同于P的点.
(1)试用反证法证明直线BD与直线CP是异面直线.
(2)求三棱锥P-ABC的体积VP-ABC

查看答案和解析>>

同步练习册答案