精英家教网 > 高中数学 > 题目详情
已知命题p:关于x的不等式2|x-2|<a的解集为∅;命题q:函数y=lg(ax2-x+a)的定义域是R.若“p或q”为真命题,“p且q”为假命题,求实数a的取值范围.
分析:由不等式2|x-2|<a的左边为大于或等于1的正数,可知当a≤1时不等式2|x-2|<a的解集为φ,而函数y=lg(ax2-x+a)的定义域是R,说明相应的二次函数图象开口向上,△<0,此时不等式ax2-x+a>0解集为R.再根据两个命题一个是真另一个是假,可以从两个命题至少一个正确的范围内,减去它们均正确的范围,即可得出实数a的取值范围.
解答:解:由不等式2|x-2|<a的解集为φ得a≤1.…(4分)
由函数y=lg(ax2-x+a)的定义域是R知:ax2-x+a>0恒成立.
a>0
△=1-4a2
<0
a>
1
2
…(8分)
由命题p和q有且仅有一个正确,
得a的取值范围是CA∪B(A∩B)=(-∞,
1
2
]∪(1,+∞)
…(12分)
点评:本题考查了复合命题真假的判断,属于中档题.解题应该注意指数函数的值域,与二次不等式恒成立的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:关于x的不等式x2+(a-1)x+1≤0的解集为∅,命题q:方程
x2
2
+
y2
a
=1表示焦点在y轴上的椭圆,若命题¬q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-ax+4=0有实根,命题q:关于x函数y=2x2+ax+4在[3,+∞)上为增函数,若“p或q”为真命题,“p且q”为假命题,则实数a取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的不等式x2-2x-a>0解集为R;命题q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果“p且q”为假命题,“p或q”为真命题,则实数a的取值范围为
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“关于x的方程x2-ax+a=0无实根”和命题q:“函数f(x)=x2-ax+a在区间[-1,+∞)上单调.如果命题p∨q是假命题,那么,实数a的取值范围是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-2x+a=0有实根,命题q:函数f(x)=(a+1)x+2是减函数,若p∨q是真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案