精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)利用绝对值及分段函数知识,将函数的解析式写成分段函数;

(2)在给出的坐标系中画出的图象,并根据图象写出函数的单调区间和值域.

【答案】1------3

2)图象如右图所示 --------------6

单调增区间为

单调减区间为--------------9

值域为:

【解析】

本试题主要是考查了函数图像以及函数单调性的运用。

1)首先去掉绝对值符号,然后

2)利用函数解析式作图

3)根据图像观察可知函数的单调区间和值域。

解:(1------3

2)图象如右图所示

--------------6

单调增区间为

单调减区间为--------------9

值域为:--------------12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在外接圆直径为1的△ABC中,角A,B,C的对边分别为a,b,c,设向量 =(a,cosB), =(b,cosA),且
(1)求sinA+sinB的取值范围;
(2)若abx=a+b,试确定实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,曲线的参数方程为为参数);在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴正半轴为极轴)中,直线的方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数 的图象向左平移φ(φ>0)个单位,所得图象关于原点对称,则φ最小时,tanφ=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面中两条直线相交于点O,对于平面上任意一点M,若xy分别是M到直线的距离,则称有序非负实数对(xy)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列三个命题:

①若p=q=0,则“距离坐标”为(00)的点有且只有1个;

②若pq=0,且p+q≠0,则“距离坐标”为(pq的点有且只有2个;

③若pq≠0则“距离坐标”为pq的点有且只有4个.

上述命题中,正确命题的是______.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,在直线

(1)求数列{an}的通项公式

(2)令,数列的前n项和为

(ⅰ)求

(ⅱ)是否存在整数λ,使得不等式(-1)nλ (nN)恒成立?若存在,求出λ的取值的集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校对校园进行绿化,移栽香樟和桂花两种大树各2株,若香樟的成活率为,桂花的成活率为,假设每棵树成活与否是相互独立的.求:

Ⅰ)两种树各成活一株的概率;

Ⅱ)设ξ表示两种树成活的总株数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的中点.

(1)求证:

(2)求证:

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】因金融危机,某公司的出口额下降,为此有关专家提出两种促进出口的方案,每种方案都需要分两年实施。若实施方案一,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为;第二年可以使出口额为第一年的倍、倍的概率分别为。若实施方案二,预计第一年可以使出口额恢复到危机前的倍、倍、倍的概率分别为;第二年可以使出口额为第一年的倍、倍的概率分别为。实施每种方案第一年与第二年相互独立。令表示方案实施两年后出口额达到危机前的倍数。

1)写出的分布列;

2)实施哪种方案,两年后出口额超过危机前出口额的概率更大?

3)不管哪种方案,如果实施两年后出口额达不到、恰好达到、超过危机前出口额,预计利润分别为万元、万元、万元,问实施哪种方案的平均利润更大?

查看答案和解析>>

同步练习册答案