精英家教网 > 高中数学 > 题目详情

【题目】已知正项等比数列{an}(nN*),首项a13,前n项和为Sn,且S3a3S5a5S4a4成等差数列.

1)求数列{an}的通项公式;

2)数列{nan}的前n项和为Tn,若对任意正整数n,都有Tn[ab],求ba的最小值.

【答案】(1)an3×()n1.(2)9.

【解析】试题分析:(1)设等比数列{an}的公比为q,由题意,列成方程,求解 ,即可求解数列的通项公式;

(2)由(1)知nan=3n×,用乘公比错位相减法求的Tn,根据Tn的增减性,求解3≤Tn<12,即可求解ba的最小值.

试题解析:(1)设等比数列{an}的公比为q

S3a3S5a5S4a4成等差数列,

∴有2(S5a5)=(S3a3)+(S4a4)

即2(a1a2a3a4+2a5)=(a1a2+2a3)+(a1a2a3+2a4),

化简得4a5a3,从而4q2=1,解得q=±

an>0,∴q,得an=3×()n-1.

(2)由(1)知,nan=3n×()n-1Tn=3×1+3×2×()+3×3×()2+…+3n()n-1;

Tn=3×1×()+3×2×()2+…+3(n-1)×()n-1+3n()n

两式相减得:Tn=3×1+3×()+3×()2+…+3×()n-1-3n()n

=3×-3n()n=6-

Tn=12-<12.

nan=3n×()n-1>0,∴{Tn}单调递增,

∴(Tn)minT1=3,故有3≤Tn<12.

∵对任意正整数n,都有Tn∈[ab],

a≤3,b≥12.

a的最大值为3,b的最小值为12.

故(ba)min1239.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,椭圆的长轴长是短轴长的2倍,是椭圆的右焦点,直线的斜率为为坐标原点.

(1)求椭圆的方程;

(2)设过点的动直线与椭圆相交于两点.当的面积最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为[﹣1,1],图象如图1所示;函数g(x)的定义域为[﹣2,2],图象如图2所示,设函数f(g(x))有m个零点,函数g(f(x))有n个零点,则m+n等于(  )

A. 6 B. 10 C. 8 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京大学从参加逐梦计划自主招生考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组 后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:

1)求分数在内的频率;

2)估计本次考试成绩的中位数(结果四舍五入,保留整数);

3)用分层抽样的方法在分数段为的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有人在分数段内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,四边形为菱形,对角线的交点为,四边形为梯形, .

(Ⅰ)若,求证: 平面

(Ⅱ)求证:平面平面

(Ⅲ)若 ,求与平面所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为直角梯形, 平面,侧面是等腰直角三角形, ,点是棱的中点.

(1)证明:平面平面

(2)求锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中, 的两个顶点的坐标分别为,三个内角满足.

(1)若顶点的轨迹为,求曲线的方程;

(2)若点为曲线上的一点,过点作曲线的切线交圆于不同的两点(其中的右侧),求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,函数

(1)若,求的取值范围;

(2)讨论的单调性;

(3)当时,讨论在区间内的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心率为

(1)求椭圆的标准方程;

(2)已知为坐标原点,直线轴交于点,与椭圆交于两个不同的点,若,求的取值范围.

查看答案和解析>>

同步练习册答案