精英家教网 > 高中数学 > 题目详情
2.函数f(x)=cos2x的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

分析 根据三角函数的周期公式进行计算即可.

解答 解:函数的周期T=$\frac{2π}{2}=π$,
故选:B.

点评 本题主要考查函数的周期的计算,根据三角函数的周期公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.
(1)计算这10名学生的成绩的均值和方差;
(2))给出正态分布的数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则z=-2x+y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$,则$\frac{x+y-3}{x-1}$的取值范围是(-∞,-1]∪[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-6x+a,则不等式f(x)<|x|的解集是(  )
A.(0,7)B.(-5,7)C.(-5,0)D.(-∞,-5)∪(0,7)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人),另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数),结果如表.
表1:A类工人生产能力的频数分布表
生产能力分组[110,120)[120,130)[130,140)[140,150)
人数8x32
表2:B类工人生产能力的频数分布表
生产能力分组[110,120)[120,130)[130,140)[140,150)
人数6y2718
(1)确定x,y的值;
(2)完成下面2×2列联表,并回答能否在犯错误的概率不超过0.001的前提下认为工人的生产能力与工人的类别有关系?
生产能力分组
工人类别
[110,130)[130,150)总计
A类工人20525
B类工人304575
总计5050100
(3)工厂规定生产零件数在[130,140)的工人为优秀员工,在[140,150)的工人为模范员工,那么在样本的A类工人中的优秀员工和模范员工中任意抽2人进行示范工作演示,试写出所抽的模范员工的人数X的分布列和期望.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知点A(3,1),点B(2,-1),点C(-2,3)O为原点.则:
(1)$\frac{1}{3}$$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{BA}$=(-$\frac{2}{3}$,$\frac{8}{3}$);(写出坐标形式结论)
(2)线段AC中点坐标为($\frac{1}{2}$,2);
(3)设四边形ABCD为平行四边形,则$\overrightarrow{OD}$坐标为(-1,5)
(4)设△ABC重心G(三角形三条中线交点),则$\overrightarrow{OG}$坐标为(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题“已知a,x∈R,如果关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,则a≥1”,写出它的逆否命题,判断其真假,并证明你的结论.

查看答案和解析>>

同步练习册答案