精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在棱长为2的正方体中,的中点是P,过点作与截面平行的截面,则截面的面积为__________.

【答案】

【解析】

试题取ABC1D1的中点MN,连结A1MMCCNNA1.由已知得四边形A1MCN是平行四边形,连结MN,作A1H⊥MNH,由题意能求出截面的面积.

解:取ABC1D1的中点MN,连结A1MMCCNNA1

由于A1N∥PC1∥MCA1N=PC1=MC

四边形A1MCN是平行四边形.

∵A1N∥PC1A1M∥BPA1N∩A1M=A1

PC1∩BP=P

平面A1MCN∥平面PBC1

因此,过A1点作与截面PBC1平行的截面是平行四边形.

又连结MN,作A1H⊥MNH,由于A1M=A1N=MN=2

AH=

=

=2=2

故答案为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;

2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);

②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)的导函数.

1)若a=b=cf4=8,求a的值;

2)若abb=c,且fx)和的零点均在集合中,求fx)的极小值;

3)若,且fx)的极大值为M,求证:M

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015秋海口校级期中)直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂C发生爆炸出现毒气泄漏,已知毒气以圆形向外扩散,且半径以每分钟的速度增大. 一所学校A,位于工厂C南偏西,且与工厂相距.消防站B位于学校A的正东方向,且位于工厂C南偏东,立即以每分钟的速度沿直线赶往工厂C救援,同时学校组织学生PA处沿着南偏东的道路,以每分钟的速度进行安全疏散(与爆炸的时间差忽略不计).要想在消防员赶往工厂的时间内(包括消防员到达工厂的时刻),保证学生的安全,学生撤离的速度应满足什么要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)如图,长方形材料中,已知.点为材料内部一点,,且. 现要在长方形材料中裁剪出四边形材料,满足,点分别在边上.

(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;

(2)试确定点上的位置,使得四边形材料的面积最小,并求出其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的各项均为正整数,Sn为其前n项和,对于n123,有,其中为使为奇数的正整数,当时,的最小值为__________;当时,___________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约公元222年,赵爽为《周碑算经》一书作序时,介绍了勾股圆方图,又称赵爽弦图(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的,如图(1)),类比赵爽弦图,可类似地构造如图(2)所示的图形,它是由3个全等的三角形与中间的一个小正三角形组成的一个大正三角形,设,若在大正三角形中随机取一点,则此点取自小正三角形的概率为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点N在曲线上,直线轴交于点,动点满足,记点的轨迹为

1)求的轨迹方程;

2)若过点的直线交于两点,点在直线 (为坐标原点),求证:

查看答案和解析>>

同步练习册答案