精英家教网 > 高中数学 > 题目详情
记函数y=1+2x的反函数为y=g(x),则g(9)=(  )
分析:根据原函数与反函数的定义域和值域互换,g(9)中的9,就是原函数值,建立方程,解之即可.
解答:解:g(9)的值,即为9=1+2x中x的值,
即2x=23
∴x=3.
故选D
点评:本题主要考查了反函数,以及原函数与反函数的关系和指数方程,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=x3+bx2+cx+2.
(Ⅰ)若f(x)在x=1时有极值-1,求b、c的值;
(Ⅱ)若函数y=x2+x-5的图象与函数y=
k-2
x
的图象恰有三个不同的交点,求实数k的取值范围;
(Ⅲ)记函数|f'(x)|(-1≤x≤1)的最大值为M,求证:M≥
3
2

查看答案和解析>>

科目:高中数学 来源:湖北模拟 题型:解答题

已知f(x)=x3+bx2+cx+2.
(Ⅰ)若f(x)在x=1时有极值-1,求b、c的值;
(Ⅱ)若函数y=x2+x-5的图象与函数y=
k-2
x
的图象恰有三个不同的交点,求实数k的取值范围;
(Ⅲ)记函数|f'(x)|(-1≤x≤1)的最大值为M,求证:M≥
3
2

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学文). 题型:填空题

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

科目:高中数学 来源:四川省成都外国语学校2011-2012学年高三2月月考(数学理) 题型:填空题

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

同步练习册答案