【题目】如果集合A,B,同时满足A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},就称有序集对(A,B)为“好集对”.这里有序集对(A,B)意指,当A≠B时,(A,B)和(B,A)是不同的集对,那么“好集对”一共有( )个.
A.5
B.6
C.7
D.8
【答案】B
【解析】解:∵A∪B={1,2,3,4},A∩B={1},A≠{1},B≠{1},∴当A={1,2}时,B={1,3,4}.
当A={1,3}时,B={1,2,4}.
当A={1,4}时,B={1,2,3}.
当A={1,2,3}时,B={1,4}.
当A={1,2,4}时,B={1,3}.
当A={1,3,4}时,B={1,2}.
故满足条件的“好集对”一共有6个.
方法2:∵A∪B={1,2,3,4},A∩B={1},
∴将2,3,4分为两组,则有 =3+3=6种,
故选B.
【考点精析】关于本题考查的元素与集合关系的判断,需要了解对象与集合的关系是,或者,两者必居其一才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知定义在(﹣1,1)上的函数f(x)满足:对任意x,y∈(﹣1,1)都有f(x)+f(y)=f(x+y).
(Ⅰ)求证:函数f(x)是奇函数;
(Ⅱ)如果当x∈(﹣1,0]时,有f(x)<0,试判断f(x)在(﹣1,1)上的单调性,并用定义证明你的判断;
(Ⅲ)在(Ⅱ)的条件下,若a﹣8x+1>0对满足不等式f(x﹣ )+f( ﹣2x)<0的任意x恒成立,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com