【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线的方程是,圆的参数方程是为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.
(1)分别求直线和圆的极坐标方程;
(2)射线(其中)与圆交于两点,与直线交于点,射线与圆交于两点,与直线交于点,求的最大值.
科目:高中数学 来源: 题型:
【题目】某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份 | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量(万吨) | 236 | 246 | 257 | 276 | 286 |
(1)利用所给数据求年需求量与年份之间的回归方程=x+;
(2)利用(1)中所求出的直线方程预测该地2018年的粮食需求量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)用定义证明函数在上是增函数;
(2)探究是否存在实数,使得函数为奇函数?若存在,求出的值;若不存在,请说明理由;
(3)在(2)的条件下,解不等式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次电影展映活动中,展映的影片有科幻片和文艺片两种类型,统计一随机抽样调查的样本数据显示,100名男性观众中选择科幻片的有60名,女性观众中有的选择文艺片,选择文艺片的观众中男性观众和女性观众一样多.
(Ⅰ)根据以上数据完成下列列联表
(Ⅱ)能否在犯错误的概率不超过0.01的前提下,认为选择影片类型与性别有关?
附:
… | 0.10 | 0.05 | 0.025 | 0.010 | 0.001 | |
… | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:
(Ⅰ)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)
(Ⅱ)如果语文和数学两科都特别优秀的共有6人,从(Ⅰ)中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.
(附参考公式)若,则, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)是一个水平放置的正三棱柱, 是棱的中点,正三棱柱的主视图如图(2).
(1)图(1)中垂直于平面的平面有哪几个(直接写出符合要求的平面即可,不必说明或证明)
(2)求正三棱柱的体积;
(3)证明: 平面.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图(如图所示):
若得分不低于80分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关:
合计 | |||
认可 | |||
不认可 | |||
合计 |
附:参考数据:(参考公式:)
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为自然对数的底数),是的导函数.
(Ⅰ)当时,求证;
(Ⅱ)是否存在正整数,使得对一切恒成立?若存在,求出的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)在直角坐标系中,以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的参数方程为 (为参数), 是曲线上的动点, 为线段的中点,设点的轨迹为曲线.
(1)求的坐标方程;
(2)若射线与曲线异于极点的交点为,与曲线异于极点的交点为,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com