精英家教网 > 高中数学 > 题目详情
16.已知两个不同直线a,b,两不同平面α,β,下列结论正确的是(  )
A.若a∥b,a∥α,则b∥αB.若a⊥b,a⊥α,则b⊥α
C.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥α,α⊥β,则a⊥β

分析 在A中,b∥α或b?α;在B中,b∥α或b?α;在C中,由直线与平面平行的性质定理得a∥b;在D中,a与β相交、平行或a?β.

解答 解:由两个不同直线a,b,两不同平面α,β,知:
在A中,若a∥b,a∥α,则b∥α或b?α,故A错误;
在B中,若a⊥b,a⊥α,则b∥α或b?α,故B错误;
在C中,若a∥α,a∥β,α∩β=b,则由直线与平面平行的性质定理得a∥b,故C正确;
在D中,若a∥α,α⊥β,则a与β相交、平行或a?β,故D错误.
故选:C.

点评 本题考查命题的真假判断与应用,着重考查直线与平面间的位置关系,考查线面平行的性质定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.抛物线x=ay2(a≠0)的焦点坐标是$({\frac{1}{4a},0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=10,an-10≤an+1≤an+10(n∈N*).
(1)若{an}是等差数列,Sn=a1+a2+…+an,且Sn-10≤Sn+1≤Sn+10(n∈N*),求公差d的取值集合;
(2)若a1,a2,…,ak成的比数列,公比q是大于1的整数,且a1+a2+…+ak>2017,求正整数k的最小值;
(3)若a1,a2,…,ak成等差数列,且a1+a2+…+ak=100,求正整数k的最小值及k取最小值时公差d的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义点P(x0,y0)到直线l:Ax+By+C=0(A2+B2≠0)的有向距离为d=$\frac{{A{x_0}+B{y_0}+C}}{{\sqrt{{A^2}+{B^2}}}}$.已知点P1,P2到直线l的有向距离分别是d1,d2,给出以下命题:
①若d1=d2,则直线P1P2与直线l平行;
②若d1=-d2,则直线P1P2与直线l垂直;
③若d1•d2>0,则直线P1P2与直线l平行或相交;
④若d1•d2<0,则直线P1P2与直线l相交,
其中所有正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗实线画出的是一个几何体的三视图,则该几何体体积为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校收集该校学生从家到学校的时间后,制作成如下的频率分布直方图:
(1)求a的值及该校学生从家到校的平均时间;
(2)若该校因学生寝室不足,只能容纳全校50%的学生住校,出于安全角度考虑,从家到校时间较长的学生才住校,请问从家到校时间多少分钟以上开始住校.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直三棱柱ABC-A1B1C1中,AB=AC=AA1=2,BC=2$\sqrt{2}$,则三棱柱ABC-A1B1C1的外接球的表面积为(  )
A.36πB.28πC.16πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等比数列,则“a1>0”是“a2017>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等比数列{an}的公比为正数,前n项和为Sn,a1+a2=2,a3+a4=6,则S8等于(  )
A.$81-27\sqrt{3}$B.54C.38-1D.80

查看答案和解析>>

同步练习册答案