精英家教网 > 高中数学 > 题目详情

【题目】设数列 的前n项和为Sn ,且满足:
;② ,其中
(1)求p的值;
(2)数列 能否是等比数列?请说明理由;
(3)求证:当r 2时,数列 是等差数列.

【答案】
(1)

解:(1)n 1时,

因为 ,所以

,所以p 1.


(2)

不是等比数列.理由如下:

假设 是等比数列,公比为q,

当n 2时, ,即

所以 (i)

当n 3时, ,即

所以 , (ii)

由(i)(ii)得q 1,与 矛盾,所以假设不成立.

不是等比数列.


(3)

当r 2时,易知

,得

时, , ①

,②

②-①得,

……

所以

d,则

所以 .

时,也适合上式,

所以

所以

所以当r 2时,数列 是等差数列.


【解析】(1.)将n=1代入②得 分析可知只能是 =0,可算出p
(2.)假设是等比数列,将n=2、3分别代入得到q,判断是否与已知条件矛盾.
(3.)当n=2时,用前 项和减去 项和可得 之间关系,分析判断可证 是等差数列.
【考点精析】利用数列的通项公式对题目进行判断即可得到答案,需要熟知如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则剩余部分体积与原四棱锥体积的比值为( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(
A.若p:?x∈R,x2﹣x+1≥0,则¬p:?x∈R,x2﹣x+1<0
B.“ ”是“θ=30°或θ=150°”的充分不必要条件
C.命题“若a=0,则ab=0”的否命题是“若a≠0,则ab≠0”
D.已知p:?x∈R,cosx=1,q:?x∈R,x2﹣x+2>0,则“p∧(¬q)”为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥S﹣ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.
(Ⅰ)证明:SD⊥平面SAB;
(Ⅱ)求AB与平面SBC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中 .若函数 有3个不同的零点,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的图象在点(x0 , f(x0))处的切线方程l:y=g(x),若函数f(x)满足x∈I(其中I为函数f(x)的定义域),当x≠x0时,[f(x)﹣g(x)](x﹣x0)>0恒成立,则称x0为函数f(x)的“穿越点”.已知函数f(x)=lnx﹣ x2 在(0,e]上存在一个“穿越点”,则a的取值范围为(
A.[ ,+∞)??
B.(﹣1, ]??
C.[﹣ ,1)??
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=e1x(﹣a+cosx),a∈R.
(Ⅰ)若函数y=f(x)在[0,π]存在单调增区间,求实数a的取值范围;
(Ⅱ)若f( )=0,证明:对于x∈[﹣1, ],总有f(﹣x﹣1)+2f′(x)cos(﹣x﹣1)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1 , BC的中点,AE⊥A1B1 , D为棱A1B1上的点.

(1)证明:AB⊥AC;
(2)证明:DF⊥AE;
(3)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为 ?若存在,说明点D的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 . (Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)若 ,画出函数y=g(x)的图象,讨论y=g(x)﹣m(m∈R)的零点个数.

查看答案和解析>>

同步练习册答案