精英家教网 > 高中数学 > 题目详情
已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点.
(1)求抛物线的方程和椭圆方程;
(2)假设椭圆的另一个焦点是F2,经过F2的直线l与抛物线交于P,Q两点,且满足
F2P
=m
F2Q
,求m的取值范围.
分析:(1)假设抛物线、椭圆的标准方程,利用抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,即可求得抛物线的方程和椭圆方程;
(2)设直线的方程为y=k(x+1),联立方程得
y=k(x+1)
y2=4x
,消去y得k2x2+(2k2-4)x+k2=0,根据直线l与抛物线相交于P、Q两点,确定k的范围,利用
F2P
=m
F2Q
,可得
1
m
+m=
4
k2
-2
,利用k的范围,即可求得m的取值范围.
解答:解:(1)由题意可设抛物线方程为y2=2px(p>0),
把M(1,2)点代入方程得:抛物线方程为y2=4x…(2分)
所以F1(1,0),
设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

∵椭圆经过点M,椭圆的焦点F1(1,0),
a2-b2=1
1
a2
+
4
b2
=1

a2=3+2
2
b2=2+2
2

∴椭圆方程为
x2
3+2
2
+
y2
2+2
2
=1
…(6分)
(2)椭圆的焦点F1(1,0),另一个焦点为F2(-1,0),
设直线的方程为y=k(x+1),联立方程得
y=k(x+1)
y2=4x

消去y得k2x2+(2k2-4)x+k2=0,
因为直线l与抛物线相交于P、Q两点,所以
k≠0
(2k2-4)2-4k2>0
,解得-1<k<1且k≠0…(9分)
设P(x1,y1)Q(x2,y2),则
x1+x2=
4-2k2
k2
x1x2=1

F2P
=m
F2Q
得(x1+1,y1)=m(x2+1,y2),所以
x1+1=m(x2+1)
y1=my2

∵P、Q为不同的两点,∴m≠1,y12=m2y22
4x1=m2•4x2,∴x1=m2x2
解得x2=
1
m
x1=m

x1+x2=
1
m
+m
…(12分)
1
m
+m=
4
k2
-2

∵0<k2<1,
4
k2
-2>2
,即
1
m
+m>2

∴m>0且m≠1…(14分)
点评:本题重点考查抛物线、椭圆的标准方程,考查直线与抛物线的位置关系,考查向量知识的运用,解题的关键是确定k的范围,找出k,m的关系,综合性强
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点.
(1)求抛物线的方程和椭圆方程;
(2)假设椭圆的另一个焦点是F2,经过F2的直线l与抛物线交于P,Q两点,且满足数学公式,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点.
(1)求抛物线的方程和椭圆方程;
(2)假设椭圆的另一个焦点是F2,经过F2的直线l与抛物线交于P,Q两点,且满足
F2P
=m
F2Q
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省保定市高二(上)期末数学试卷(理科)(解析版) 题型:解答题

已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点.
(1)求抛物线的方程和椭圆方程;
(2)假设椭圆的另一个焦点是F2,经过F2的直线l与抛物线交于P,Q两点,且满足,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年高二(上)期末数学试卷(文科)(解析版) 题型:解答题

已知一条抛物线和一个椭圆都经过点M(1,2),它们在x轴上具有相同的焦点F1,且两者的对称轴都是坐标轴,抛物线的顶点在坐标原点.
(1)求抛物线的方程和椭圆方程;
(2)假设椭圆的另一个焦点是F2,经过F2的直线l与抛物线交于P,Q两点,且满足,求m的取值范围.

查看答案和解析>>

同步练习册答案