精英家教网 > 高中数学 > 题目详情

【题目】已知mn是两条不同的直线,αβ是两个不同的平面,给出下列命题:

①若mnnβmα,则αβ

②若αβαβmnm,则nαnβ

③若mαmnnβ,则αβαβ

④若αβmnmnαnβ,则nαnβ

其中正确命题的序号是(

A.①②B.①③C.①④D.②④

【答案】C

【解析】

中,由面面垂直的判定定理得;在中,有可能与都不垂直;在中,有可能相交但不垂直;在中,由线面平行的性质定理得

是两条不同的直线,是两个不同的平面,知:

中,若,则由面面垂直的判定定理得,故正确;

中,若,则有可能与都不垂直,故错误;

中,若,则相交或平行,即有可能相交但不垂直,故错误;

中,若,则由线面平行的性质定理得,故正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校在学期结束,为了解家长对学校工作的满意度,对两个班的100位家长进行满意度调查,调查结果如下:

非常满意

满意

合计

A

30

15

45

B

45

10

55

合计

75

25

100

1)根据表格判断是否有的把握认为家长的满意程度与所在班级有关系?

2)用分层抽样的方法从非常满意的家长中抽取5人进行问卷调查,并在这5人中随机选出2人进行座谈,求这2人都来自同一班级的概率?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCD,△DAB≌△DCBE为线段BD上的点,且EAEBEDAB,延长CEAD于点F

1)若GPD的中点,求证平面PAD⊥平面CGF

2)若ADAP6,求平面BCP与平面DCP所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某美术学院2018年在山西招生,报名人数很多.工作人员在某个市区抽取了该区2018年美术招生考试成绩中200名学生的色彩和素描的初试成绩,按成绩分组,得到的频率分布表如下图所示.

组号

分组

频数

频率

1

24

0.12

2

0.18

3

64

0.32

4

60

5

16

0.08

合计

200

1.00

1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图,并由频率分布直方图估算中位数;

2)为了能更清楚地了解该市学生的情况,该美院决定在复试以前先进行抽样调研.但受场地和教授人数的客观限制,决定从第3组选出3人,第4组选出2人,第5组选出1人,然后从这6人中再选出2人进行调研,求这2人均来自第三组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1F2为椭圆Ey21的左、右焦点,过点P(﹣20)的直线l与椭圆E有且只有一个交点T

1)求F1TF2的面积;

2)求证:光线被直线反射后经过F2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式|x1|+|2x+1|3的解集为{x|axb}

1)求ab的值;

2)若正实数xy满足x+yab+2且不等式(yc24x+8cx1y≤0对任意的xy恒成立,求实数c的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,,且.是线段上一点,且.

1)求证:平面平面.

2)若,在线段上是否存在一点,使得到平面的距离为?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)当为何值时,直线是曲线的切线;

(2)若不等式上恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案