精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的单调区间和极值;

2)已知函数的图象与函数的图象关于直线对称,证明当时,

3)如果,且,证明: .

【答案】(1)见解析;(2)见解析;(3)见解析.

【解析】本试题主要是考查了运用导数研究函数的性质的综合运用。

1)利用导数,结合导数的符号与函数单调性的关系得到第一问中的单调区间和极值问题。

2)先利用对称性求解函数的解析式,然后构造函数证明不等式恒成立,或者利用第一问的结论,结合对称性得到证明。

3)由上可知函数的的单调性,结合性质可知不等式的证明。

.令,则

变化时, 的变化情况如下表:











极大值


所以在区间内是增函数,在区间内是减函数.

函数处取得极大值.且

)因为函数的图象与函数的图象关于直线对称,

所以,于是

,则

时, ,从而,又,所以

于是函数在区间上是增函数.

因为,所以,当时, .因此

(1) ,由()及,,矛盾;

(2) ,由()及,,矛盾;

根据(1)(2)可得.不妨设

由()可知,所以

因为,所以,又,由(),在区间内是增函数,

所以,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数上单调递增,则的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知美国苹果公司生产某款iPhone手机的年固定成本为40万美元每生产1万只还需另投入16万美元.设苹果公司一年内共生产该款iPhone手机x万只并全部销售完每万只的销售收入为R(x)万美元且R(x)=

(1)写出年利润W(万美元)关于年产量x(万只)的函数解析式;

(2)当年产量为多少万只时苹果公司在该款iPhone手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求函数的单调区间;

2若函数在区间上有1个零点,求实数的取值范围;

3是否存在正整数,使得上恒成立?若存在,求出k的最大值;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的奇函数fx),当x≥0时,fx)=,则关于x的函数Fx)=fx)-的所有零点之和为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过双曲线 =1(a>0,b>0)的右焦点F作一条直线,当直线斜率为l时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(
A.(1,
B.(1,
C.(
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱中, 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点和直线,设圆的半径为1,圆心在直线上.

(Ⅰ)若圆心也在直线上,过点作圆的切线.

(1)求圆的方程;(2)求切线的方程;

(Ⅱ)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线和圆.

(1)求证:直线恒过一定点

(2)试求当为何值时,直线被圆所截得的弦长最短;

(3)在(2)的前提下,直线是过点,且与直线平行的直线,求圆心在直线上,且与圆相外切的动圆中半径最小圆的标准方程.

查看答案和解析>>

同步练习册答案