精英家教网 > 高中数学 > 题目详情
函数的最小值为(   )
A.   B.   C.   D.
C

表示的是x轴上动点到两个定点的距离和;A,B在x轴的两侧.所以的最小值就是A,B两点间的距离
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的中心、右焦点、右顶点及右准线与x轴的交点依次为O、F、G、H,则的最大值为(   )
A.B.C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

( 12分)如图,椭圆的方程为,其右焦点为F,把椭圆的长轴分成6等分,过每个等分点作x轴的垂线交椭圆上半部于点P1,P2,P3,P4,P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

(1)求椭圆的方程;
(2)设直线lF点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分14分)已知的顶点在椭圆上,在直线上,且.
(1)当边通过坐标原点时,求的长及的面积;
(2)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点在椭圆C:上,且椭圆C的离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点作直线交椭圆C于点的垂心为,是否存在实数,使得垂心在Y轴上.若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=一x与椭圆C: =1(a>b>0)交于A、B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为.
A.       B.         C.         D.4-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆(a>b>0)的离心率 
该椭圆上一点,
(I)求椭圆的方程.
(II)过点作直线与椭圆相交于点,若以为直径的圆经原点,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知椭圆的两焦点为F1),F2(1,0),直线x = 4是椭圆的一条准线.
(1)求椭圆方程;
(2)设点P在椭圆上,且,求cos∠F1PF2的值;
(3)设P是椭圆内一点,在椭圆上求一点Q,使得最小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左右焦点,若P是该椭圆上的一个动点则最大值和最小值分别是            (   )
A.B.C.D.

查看答案和解析>>

同步练习册答案