精英家教网 > 高中数学 > 题目详情
已知双曲线C的中点在原点,双曲线C的右焦点为F坐标为(2,0),且双曲线过点C(
2
3
).
(1)求双曲线C的方程;
(2)设双曲线C的左顶点为A,在第一象限内任取双曲线上一点P,试问是否存在常数λ(λ>0),使得∠PFA=λ∠PAF恒成立?并证明你的结论.
分析:(1)设出双曲线方程,利用双曲线C的右焦点为F坐标为(2,0),且双曲线过点C(
2
3
),建立方程组,求出几何量,即可得出双曲线的方程;
(2)先由PF⊥x轴时,求出λ的值,再证明当PF与x轴不垂直时∠PFA=2∠PAF成立.
解答:解:(1)设双曲线方程为
x2
a2
-
y2
b2
=1(a>0,b>0)

∵双曲线C的右焦点为F坐标为(2,0),且双曲线过点C(
2
3
),
a2+b2=4
2
a2
-
3
b2
=1
,∴a=1,b=
3

∴双曲线C的方程为x2-
y2
3
=1

(2)当PF⊥x轴时,P(2,3),|AF|=1+2=3,∴∠PFA=90°,∠PAF=45°,此时λ=2.
以下证明当PF与x轴不垂直时∠PFA=2∠PAF成立.
设P(x0,y0),则kPA=tan∠PAF=
y0
x0+1
,kPF=-tan∠PFA=
y0
x0-2

tan2∠PAF=
2•
y0
x0+1
1-(
y0
x0+1
)2
=
2(x0+1)y0
(x0+1)2-y02

x02-
y02
3
=1
得y02=3(x02-1)代入上式,得tan2∠PAF=tan∠PFA恒成立.
∵∠PFA∈(0,
π
2
)∪(
π
2
3
),∠PAF∈(0,
π
4
)∪(
π
4
π
3
),
∴∠PFA=2∠PAF恒成立.
综上,常数λ为2.
点评:本题考查双曲线的方程与性质,考查存在性问题的探求,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年龙岩一中冲刺文)(分)已知双曲线C的中心在原点,焦点在x轴上,右准线为一条渐近线的方程是过双曲线C的右焦点F2的一条弦交双曲线右支于P、Q两点,R是弦PQ的中点.

   (1)求双曲线C的方程;

   (2)若A、B分别是双曲C上两条渐近线上的动点,且2|AB|=|F1F2|,求线段AB的中点M的迹方程,并说明该轨迹是什么曲线。

   (3)若在双曲线右准线L的左侧能作出直线m:x=a,使点R在直线m上的射影S满足,当点P在曲线C上运动时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学理卷 题型:解答题

(本小题满分13分)

已知双曲线G的中心在原点,它的渐近线与圆x2y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得lG交于AB两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.

 (1)求双曲线G的渐近线的方程;

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.

 

查看答案和解析>>

同步练习册答案