精英家教网 > 高中数学 > 题目详情

【题目】本题满分15分某工厂某种航空产品的年固定成本为万元,每生产,需另投入成本为当年产量不足件时,万元).当年产量不小于件时,万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.

(1)写出年利润万元)关于年产量)的函数解析式;

(2)年产量为多少时,该厂在这一商品的生产中所获利润最大

【答案】(1);(2)年产量为件时,利润最大为万元.

【解析】

试题(1)实际应用题首先要根据题意,建立数学模型,即建立函数关系式,这里,要用分类讨论的思想,建立分段函数表达式;(2)根据建立的函数关系解模,即运用数学知识求函数的最值,这里第一段,运用的是二次函数求最值,而第二段,则可运用基本不等式求最值,然后再作比较,确定最终的结果,最后要回到实际问题作答.

试题解析:解:(1)当时,

时,

所以.

(2)当时,

此时,当时,取得最大值万元.

时,

此时,当时,即时,取得最大值万元,

所以产量为件时,利润最大为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·湖南)某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖,求下列问题:(1)求顾客抽奖1次能获奖的概率(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 X ,求 X 的分布列和数学期望.
(1)(1)求顾客抽奖1次能获奖的概率
(2)(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为 , 求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1 , 设AB1的中点为D,B1CBC1=E.求证:

(1)DE∥平面AA1C1C
(2)BC1⊥AB1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆(a>b>0)过点(0,),且离心率为

(Ⅰ)求椭圆E的方程;
(II)设直线x my 1,(m R)交椭圆E与A,B两点,判断点G(-,0)与以线段AB为直径的圆的位置关系,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面,点分别是的中点。

(1)求证:平面
(2)求证:平面平面
(3)求直线与平面所成角的大小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖北)某厂用鲜牛奶在某台设备上生产两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为

(Ⅰ)求Z的分布列和均值;该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(Ⅱ) 若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数对定义域内的每一个值在其定义域内都存在唯一的使成立,则称该函数为“依赖函数”.

(1)判断函数是否为“依赖函数”,并说明理由;

(2)若函数在定义域上为“依赖函数”,求实数乘积的取值范围;

(3)已知函数在定义域上为“依赖函数”,若存在实数使得对任意的有不等式都成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,.
(1)(I)求的单调区间和极值;
(2)(II)证明:若存在零点,则的区间(1,]上仅有一个零点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】
设函数
①若,则的最小值为
②若恰有2个零点,则实数的取值范围是 .

查看答案和解析>>

同步练习册答案