精英家教网 > 高中数学 > 题目详情
如图所示,在四边形ABCD中,ADBCADAB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥ABCD,则在三棱锥ABCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABCB.平面ADC⊥平面BDC
C.平面ABC⊥平面BDCD.平面ADC⊥平面ABC
D
由题意知,在四边形ABCD中,CDBD.
在三棱锥ABCD中,平面ABD⊥平面BCD,两平面的交线为BD
所以CD⊥平面ABD,因此有ABCD.
又因为ABADADDCD,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点.
 
(1)证明:四边形BCHG是平行四边形.
(2)C、D、F、E四点是否共面?为什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF中,是锐角,且平面ACEF⊥平面ABCD.

(1)求证:
(2)若直线DE与平面ACEF所成的角的正切值是,试求的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在矩形中,点为边上的点,点为边的中点,,现将沿边折至位置,且平面平面.

(1) 求证:平面平面
(2) 求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m,n和平面α,β满足m⊥n,m⊥α,α⊥β,则(  )
A.n⊥βB.n∥β
C.n⊥αD.n∥α或n?α

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列命题,其中正确的命题是(  )
①P∈a,P∈α⇒a?α;
②a∩b=P,b?β⇒a?β;
③a∥b,a?α,P∈b,P∈α⇒b?α;
④α∩β=b,P∈α,P∈β⇒P∈b.
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中,错误的个数是(   )
①一条直线与一个点就能确定一个平面
②若直线平面,则
③若函数定义域内存在满足 ,则必定是的极值点
④函数的极大值就是最大值
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列为真命题的是(  )
A.若α⊥β,m⊥α,则m∥βB.若α⊥γ,β⊥γ,则α∥β
C.若m⊥α,n∥m,则n⊥αD.若m∥α,n∥α,则m∥n

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设a,b为空间的两条直线,α,β为空间的两个平面,给出下列命题:
①若a∥α,a∥β,则α∥β;②若a⊥α,α⊥β,则α⊥β;
③若a∥α,b∥α,则a∥b; ④若a⊥α,b⊥α,则a∥b.
上述命题中,所有真命题的序号是________.

查看答案和解析>>

同步练习册答案