精英家教网 > 高中数学 > 题目详情
11.对于在区间[m,n]上有意义的两个函数f(x)和g(x),如果对于任意的x∈[m,n],都有|f(x)-g(x)|≤1恒成立,则称f(x)与g(x)在区间[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的,现有函数f1(x)=loga(x-3a),f2(x)=loga$\frac{1}{x-a}$(a>0,a≠1)给定一个区间[a+2,a+3].
(1)当a=$\frac{1}{2}$时,判断f1(x)与f2((x)在区间[a+2,a+3]上是否是接近的,并说明理由;
(2)若f1(x)与f2(x)在区间[a+2,a+3]上是接近的,求实数a的取值范围.

分析 (1)求出函数f1(x)-f2((x)的单调性和最值,可得|f1(x)-f2(x)|∈[1,log26],由新定义即可判断;
(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的?|f1(x)-f2(x)|≤1?|loga(x-3a)-loga$\frac{1}{x-a}$|≤1?|loga[(x-3a)(x-a)]|≤1?a≤(x-2a)2-a2≤$\frac{1}{a}$对于任意x∈[a+2,a+3]恒成立.

解答 解:(1)当a=$\frac{1}{2}$时,函数f1(x)=$lo{g}_{\frac{1}{2}}$(x-$\frac{3}{2}$),f2(x)=$lo{g}_{\frac{1}{2}}$$\frac{1}{x-\frac{1}{2}}$,
f1(x)-f2(x)=$lo{g}_{\frac{1}{2}}$(x-$\frac{3}{2}$)-$lo{g}_{\frac{1}{2}}$$\frac{1}{x-\frac{1}{2}}$=$lo{g}_{\frac{1}{2}}$(x-$\frac{3}{2}$)(x-$\frac{1}{2}$)
=$lo{g}_{\frac{1}{2}}$[(x-1)2-$\frac{1}{4}$]在区间[$\frac{5}{2}$,$\frac{7}{2}$]上递减,
即有x=$\frac{5}{2}$时,取得最大值,且为-1,
x=$\frac{7}{2}$时,取得最小值,且为-log26,
则|f1(x)-f2(x)|∈[1,log26],
即有|f1(x)-f2(x)|>1.
则f1(x)与f2(x)在区间[a+2,a+3]上是非接近的;
(2)f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的,
即为|f1(x)-f2(x)|≤1?|loga(x-a)-loga$\frac{1}{x-a}$|≤1
?|loga(x-3a)(x-a)|≤1
?a≤(x-2a)2-a2≤$\frac{1}{a}$对于任意x∈[a+2,a+3]恒成立.
设h(x)=(x-2a)2-a2,x∈[a+2,a+3],
且其对称轴x=2a<2在区间[a+2,a+3]的左边,
?$\left\{\begin{array}{l}{a≤h(x)_{min}}\\{\frac{1}{a}≥h(x)_{max}}\end{array}\right.$?$\left\{\begin{array}{l}{a≤h(a+2)}\\{\frac{1}{a}≥h(a+3)}\end{array}\right.$?$\left\{\begin{array}{l}{a≤4-4a}\\{\frac{1}{a}≥9-6a}\end{array}\right.$
?$\left\{\begin{array}{l}{a≤\frac{4}{5}}\\{a≤\frac{9-\sqrt{57}}{12}或a≥\frac{9+\sqrt{57}}{12}}\end{array}\right.$?0<a≤$\frac{9-\sqrt{57}}{12}$,
所以,当0<a≤$\frac{9-\sqrt{57}}{12}$,f1(x)与f2(x)在给定区间[a+2,a+3]上是接近的.

点评 本题考查新定义和对数函数的性质和应用,解题时要注意函数恒成立的充要条件的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设抛物线y2=8x上有两点A,B,其焦点为F,满足$\overrightarrow{AF}$=2$\overrightarrow{FB}$,则|AB|=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等比数列{an}中,a3=8前三项和为S3=24,则公比q的值是(  )
A.1B.-$\frac{1}{2}$C.-1或-$\frac{1}{2}$D.1或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{a}{x}-|x-a|$.
(1)当a=1,求f(x)在区间[2,3]上的值域;
(2)若a>0,写出f(x)在(0,+∞)的单调区间;
(3)当x∈(0,4]时,f(x)≥x-3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=3${\;}^{{x}^{2}-1}$,(-1≤x≤0)的反函数是y=$-\sqrt{{log}_{3}x+1}$,x∈[$\frac{1}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=3x-3|x|,若3tf(2t)-mf(t)≥0对于t∈[-2,-1]恒成立,则实数m范围是(  )
A.[$\frac{1}{9}$,+∞)B.(-∞,$\frac{1}{9}$]C.[$\frac{10}{9}$,+∞)D.(-∞,$\frac{10}{9}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={-1,1},B={∅,{-1},{1},{-1,1}},则A与B的关系是(  )
A.A⊆BB.A∈BC.A与B无关系D.A?B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若P、Q、R是边长为1的正△ABC边BC上的四等分点,则$\overrightarrow{AB}$•$\overrightarrow{AP}$+$\overrightarrow{AP}$•$\overrightarrow{AQ}$+$\overrightarrow{AQ}$•$\overrightarrow{AR}$+$\overrightarrow{AR}$•$\overrightarrow{AC}$=$\frac{13}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\sqrt{2}$cos(x+$\frac{π}{12}$),x∈R.
(1)求f($\frac{7π}{12}$)的值;
(2)若cosθ=$\frac{3}{5}$,θ∈(-$\frac{π}{2}$,0),求f(2θ-$\frac{π}{3}$).

查看答案和解析>>

同步练习册答案