精英家教网 > 高中数学 > 题目详情

【题目】有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:

气温

0

4

12

19

27

热奶茶销售杯数

150

132

130

104

94

(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程精确到0.1),若某天的气温为,预测这天热奶茶的销售杯数;

(Ⅱ)从表中的5天中任取两天,求所选取两天中至少有一天热奶茶销售杯数大于130的概率.

参考数据:.

参考公式:

【答案】(1) ﹣2.0x+146.8,预测气温为15oC,热奶茶销售约117杯;(2)

【解析】

1)由表格中数据计算,求出回归系数,再写出回归方程,

利用回归方程求得对应的值;

2)利用列举法求出基本事件数,再计算所求的概率值.

(1)由表格中数据可得,

=×(0+4+12+19+27)=12.4,=×(150+132+130+104+94)=122;

==≈﹣2.0,

==122﹣(﹣2.0)×12.4=146.8;

∴热奶茶销售杯数关于气温的线性回归方程为

=﹣2.0x+146.8;

当x=15时, =﹣2.0×15+146.8=116.8≈117,

即预测气温为15oC,这天热奶茶销售约117杯;

(2)记表中的第1天到第5天为A、B、c、d、e,其中销售杯数大于130的有A、B,

任取两天有AB,Ac,Ad,Ae,Bc,Bd,Be,cd,ce,de共10种情况;

其中至少有一天销售杯数大于130有AB,Ac,Ad,Ae,Bc,Be共7种情况;

∴所选取两天中至少有一天热奶茶销售杯数大于130的概率为P=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直线PC与平面ABCD所成角的正切为
(1)设E为直线PC上任意一点,求证:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】点P在双曲线 =1(a>0,b>0)的右支上,其左、右焦点分别为F1 , F2 , 直线PF1与以坐标原点O为圆心、a为半径的圆相切于点A,线段PF1的垂直平分线恰好过点F2 , 则该双曲线的渐近线的斜率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+be﹣x﹣2asinx(a,b∈R).
(1)当a=0时,讨论函数f(x)的单调区间;
(2)当b=﹣1时,若f(x)>0对任意x∈(0,π)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C所对的边分别为a,b,c,向量 =( ,1), =(cosA+1,sinA),且 的值为2+
(1)求∠A的大小;
(2)若a= ,cosB= ,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若实数x,y满足的约束条件 ,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)关于的不等式对一切恒成立,求实数的取值范围;

(2)解关于的不等式

(3)函数在区间上有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了缓解城市交通压力,大力发展公共交通,提倡多坐公交少开车,为了调查市民乘公交车的候车情况,交通主管部门从在某站台等车的名候车乘客中随机抽取人,按照他们的候车时间(单位:分钟)作为样本分成组,如下表所示:

组别

候车时间

人数

(1)估计这名乘客中候车时间少于分钟的人数;

(2)若从上表第四、五组的人中随机抽取人做进一步的问卷调查,求抽到的人恰好来自不同组的概率.

查看答案和解析>>

同步练习册答案