精英家教网 > 高中数学 > 题目详情
1.设F1、F2分别是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左、右焦点,P为椭圆上任一点,点M的坐标为(3,1),则|PM|+|PF1|的最大值为11.

分析 利用椭圆的定义表示出|PA|+|PF1|,通过利用三点共线求出最大值.

解答 解:将M的坐标代入椭圆方程可得$\frac{9}{25}+\frac{1}{16}<1$,即M在椭圆内,连结PF2、MF2
F1(-3,0),F2(3,0),由椭圆的定义可得,|PF1|+|PF2|=2a=10,
则|PM|+|PF1|=||PF1|+|PF2|+|PM|-|PF2|=2a+|PM|-|PF2|
-|MF2|≤|PM|-||PF2|≤|MF2|=1.
则|PM|+|PF1|的最大值为2a+1=11.
故答案为:11

点评 本题考查椭圆的定义以及第二定义的应用,表达式的几何意义的应用,考查转化思想与计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知a∈R,p:关于x的方程x2-2x+a=0有两个不等实根;q:方程$\frac{{x}^{2}}{a-3}+\frac{{y}^{2}}{a+1}=1$表示双曲线.若p∨q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,5,6},则A∩(∁UB)=(  )
A.{1,2}B.{1,2,7}C.{1,2,4}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在调查中学生是否抽过烟的时候,给出两个问题作答,无关紧要的问题是:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你抽过烟吗?”然后要求被调查的中学生掷一枚质地均匀的骰子一次,如果出现奇数点,就回答第一个问题,否则回答第二个问题,由于回答哪一个问题只有被测试者自己知道,所以应答者一般乐意如实地回答问题,如我们把这种方法用于300个被调查的中学生,得到80个“是”的回答,则这群人中抽过烟的百分率大约为13.33%.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分别为m和n,则2m-n的值为(  )
A.$\frac{9}{2}$B.6C.$\frac{15}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的函数f(x)满足:f'(x)>2-f(x),f(0)=6,f'(x)是f(x)的导函数,则不等式exf(x)>2ex+4(其中e为自然对数的底数)的解集为(  )
A.(0,+∞)B.(-∞,0)∪(3,+∞)C.(-∞,0)∪(1,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax(a>0且a≠1)的图象经过点(2,$\frac{1}{9}$).
(1)比较f(2)与f(b2+2)的大小;
(2)求函数g(x)=a${\;}^{{x}^{2}-2x}$(x≥0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将两颗骰子各掷一次,设事件A为“两个点数相同”则概率P(A)等于(  )
A.$\frac{10}{11}$B.$\frac{5}{11}$C.$\frac{1}{6}$D.$\frac{5}{36}$

查看答案和解析>>

同步练习册答案