精英家教网 > 高中数学 > 题目详情
15、(几何证明选讲)如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则圆O的面积为
分析:由已知中,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,我们根据切线的性质,等腰三角形两底角相待,直径所对圆周角为直角,30°所对的直角边等于斜边的一半,求出圆的半径,代入圆面积公式,即可得到答案.
解答:解:∵PA是圆O的切线,
∴OA⊥AP
又∵∠PAB=120°
∴∠BAO=∠ABO=30°
又∵在Rt△ABC中,AC=2
∴BC=4,即圆O的直径2R=4
∴圆O的面积S=πR2=4π
故答案为:4π
点评:本题考查的知识点是切线的性质,圆周角定理,其中根据已知条件,求出圆的半径是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(选修4-1:几何证明选讲)
如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,PD=1,BD=8,求线段BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(几何证明选讲)如图,AB、CD是圆O的两条弦,且AB是线段CD的中垂线,已知AB=10,CD=8,则线段AC的长度为
4
5
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)几何证明选讲:如图,CB是⊙O的直径,AP是⊙O的切线,A为切点,AP与CB的延长线交于点P,若PA=8,PB=4,求AC的长度.
(2)坐标系与参数方程:在极坐标系Ox中,已知曲线C1:ρcos(θ+
π
4
)
=
2
2
与曲线C2;ρ=1相交于A、B两点,求线段AB的长度.
(3)不等式选讲:解关于x的不等式|x-1|+a-2≤0(a∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲.
如图,AB是⊙O的一条切线,切点为B,ADE、CFD、CGE都是⊙O的割线,已知AC=AB.证明:
(1)AD•AE=AC2
(2)FG∥AC.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(几何证明选讲)如图,AB是半圆O的直径,点C在半圆上,CD⊥AB,垂足为D,且AD=5DB,设∠COD=θ,则tanθ的值为
5
2
5
2

(2)(坐标系与参数方程)圆O1和圆O2的极坐标方程分别为ρ=4cosθ,ρ=-4sinθ,则经过两圆圆心的直线的直角坐标方程为
x-y-2=0
x-y-2=0

(3)(不等式选讲)若不等式|3x-b|<4的解集中的整数有且仅有0,1,2,则b的取值范围是
(2,4)
(2,4)

查看答案和解析>>

同步练习册答案