精英家教网 > 高中数学 > 题目详情
已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.
(I)求抛物线S的方程;
(II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点.
分析:(I)设抛物线S的方程为y2=2px,将直线的方程代入抛物线的方程,消去y得到关于x的一元二次方程,再结合直线l与抛物线相交于两个不同的点得到根的判别式大于0,结合根与系数的关系利用重心公式即可求得p值,从而解决问题.
(II)先对动直线的斜率进行分类讨论.当动直线PQ的斜率存在时,设动直线PQ方程为y=kx+b,将y=kx+b代入抛物线方程,得ky2-16y+16b=0,利用垂直关系求得b与k的关系,此时直线PQ过一个定点.当PQ的斜率不存在时,此时直线PQ亦过此点,从而问题解决.
解答:解:(I)设抛物线S的方程为y2=2px.(1分)
4x+y-20=0
y2=2px
可得2y2+py-20p=0.(3分)
由△>0,有p>0,或p<-160.
设B(x1,y1),C(x2,y2),则y1+y2=-
p
2

x1+x2=(5-
y1
4
)+(5-
y2
4
)=10-
y1+y2
4
=10+
p
8
.
(5分)
设A(x3,y3),由△ABC的重心为F(
p
2
,0)
,则
x1+x2+x3
3
=
p
2
y1+y2+y3
3
=0

x3=
11p
8
-10,y3=
p
2
.
(6分)
∵点A在抛物线S上,
(
p
2
)2=2p(
11p
8
-10)

∴p=8.(7分)
∴抛物线S的方程为y2=16x.(8分)
(II)当动直线PQ的斜率存在时,
设动直线PQ方程为y=kx+b,显然k≠0,b≠0.(9分)
∵PO⊥OQ,
∴kOP•kOQ=-1.
设P(xP,yP)Q(xQ,yQ
yP
xP
yQ
xQ
=-1

∴xPxQ+yPyQ=0.(10分)
将y=kx+b代入抛物线方程,得ky2-16y+16b=0,
yPyQ=
16b
k
.

从而xPxQ=
yP2yQ2
162
=
b2
k2

b2
k2
+
16b
k
=0.

∵k≠0,b≠0,
∴b=-16k,
∴动直线方程为y=kx-16k=k(x-16),
此时动直线PQ过定点(16,0).(12分)
当PQ的斜率不存在时,显然PQ⊥x轴,又PO⊥OQ,
∴△POQ为等腰直角三角形.
y2=16x
y=x
y2=16x
y=-x
得到P(16,16),Q(16,-16),
此时直线PQ亦过点(16,0).(13分)
综上所述,动直线PQ过定点:M(16,0).(14分)
点评:本小题主要考查直线与圆锥曲线的综合问题、恒过定点的直线、抛物线的标准方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.
(I)求抛物线S的方程;
(II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线S的顶点在坐标原点,焦点在x轴上,的三个顶点都在抛物线上,且的重心为抛物线的焦点,若BC所在直线的方程为

   (I)求抛物线S的方程;

   (II)若O是坐标原点,PQ是抛物线S上的两动点,且满足.试说明动直线PQ是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.

(1)求抛物线S的方程;

(2)若O是坐标原点,P、Q是抛物线S上的两个动点,且满足OP⊥OQ.试说明动直线PQ是否过定点.

查看答案和解析>>

科目:高中数学 来源:2008年湖北省武汉市华中师大一附中高三五月调考数学试卷(文理合卷)(解析版) 题型:解答题

已知抛物线S的顶点在坐标原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC所在直线l的方程为4x+y-20=0.
(I)求抛物线S的方程;
(II)若O是坐标原点,P、Q是抛物线S上的两动点,且满足PO⊥OQ.试说明动直线PQ是否过一个定点.

查看答案和解析>>

同步练习册答案