精英家教网 > 高中数学 > 题目详情
已知
π
2
<β<α<
4
,且cos(α-β)=
12
13
sin(α+β)=-
3
5
,求:cos2α的值.
分析:由α与β的范围求出α-β与α+β的范围,利用同角三角函数间的基本关系求出sin(α-β)与cos(α+β)的值,所求式子角度变形后利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.
解答:解:∵
π
2
<β<α<
4
,∴0<α-β<
π
2
,π<α+β<
2

∵cos(α-β)=
12
13
,sin(α+β)=-
3
5

∴sin(α-β)=
1-(
12
13
)
2
=
5
13
,cos(α+β)=-
1-(-
3
5
)
2
=-
4
5

则cos2α=cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)=
12
13
×(-
4
5
)-(-
3
5
)×
5
13
=-
33
65
点评:此题考查了二倍角的余弦函数公式,以及两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(
x
2
+
π
6
)+3
,(x∈R)
(1)用五点法画出它在一个周期内的闭区间上的图象;
(2)求单调增减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
1
2
,则sin(
2
-2α)=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知-2<x<y<3,则x-y的取值范围为
(-5,0)
(-5,0)

查看答案和解析>>

科目:高中数学 来源:志鸿系列训练必修一数学苏教版 苏教版 题型:044

已知2∈{x|x2+ax-3=0},求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知-2<x<y<3,则x-y的取值范围为________.

查看答案和解析>>

同步练习册答案