精英家教网 > 高中数学 > 题目详情

【题目】设抛物线,点 ,过点的直线交于 两点.

1)当轴垂直时,求直线的方程;

2)证明:

【答案】(1) y=

(2)见解析.

【解析】分析:(1)首先根据轴垂直,且过点,求得直线l的方程为x=1,代入抛物线方程求得点M的坐标为利用两点式求得直线的方程;

(2)分直线lx轴垂直、lx轴不垂直两种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.

详解:(1)当lx轴垂直时,l的方程为x=2,可得M的坐标为(22)或(2–2).

所以直线BM的方程为y=

2)当lx轴垂直时ABMN的垂直平分线,所以∠ABM=∠ABN

lx轴不垂直时,设l的方程为Mx1y1),Nx2y2),则x1>0x2>0

ky2–2y–4k=0,可知y1+y2=y1y2=–4

直线BMBN的斜率之和为

y1+y2y1y2的表达式代入①式分子,可得

所以kBM+kBN=0,可知BMBN的倾斜角互补,所以∠ABM=ABN

综上,∠ABM=∠ABN

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到/千米时,造成堵塞,此时车流速度为;当车流密度不超过/千米时,车流速度为千米/小时,研究表明:当时,车流速度是车流密度的一次函数.

1)当时,求函数的表达式;

2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行运动会,其中三级跳远的成绩在8.0米 (四舍五入,精确到0.1米) 以上的进入决赛,把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30 ,第6小组的频数是7 .

(Ⅰ)求进入决赛的人数;

(Ⅱ)若从该校学生(人数很多)中随机抽取两名,记表示两人中进入决赛的人数,求的分布列及数学期望;

(Ⅲ) 经过多次测试后发现,甲成绩均匀分布在8~10米之间,乙成绩均匀分布在9.5~10.5米之间,现甲,乙各跳一次,求甲比乙远的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知面垂直于圆柱底面, 为底面直径, 是底面圆周上异于的一点, .求证:

(1)平面平面

(2)求几何体的最大体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,函数(xR).

(1) 求函数的单调区间;

(2) 若函数有极大值32,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,,E为PC的中点,

(1)求证:

(2)若与面ABCD所成角为,P在面ABCD射影为O,问是否在BC上存在一点F,使面与面PAB所成的角为,若存在,试求点F的位置,不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线)的焦点FE上一点到焦点的距离为4.

1)求抛物线E的方程;

2)过F作直线l交抛物线EAB两点,若直线AB中点的纵坐标为,求直线l的方程及弦的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆及点

(1)若直线平行于,与圆相交于两点,,求直线的方程;

(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“应用”的用户中随机抽取了100名用户进行调查得到如下数据:

每周使用时间

及以上

4

3

3

7

6

30

6

5

4

4

8

20

合计

10

8

7

11

14

50

1)在每周使用该“应用”时间不超过的样本中,按性别分层抽样,随机抽取5名用户:

①求抽取的5名用户中男,女用户各多少人;

②从这5名用户中随机抽取2名用户,求抽取的2名用户均为男用户的概率.

2)如果每周使用该“应用”超过的用户认为“喜欢该应用”,能否在犯错误的概率不超过0.05的前提下认为“喜欢该应用”与性别有关.

参考公式:,其中

下面的临界值表仅供参考:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

同步练习册答案