精英家教网 > 高中数学 > 题目详情
(2012•德阳二模)已知x1,x2为三次函数f(x)=
1
3
x3+
1
2
ax2+2bx
的两个极值点,且x1∈(0,1),x2∈(1,2),则a-2b的范围是(  )
分析:根据极值的意义可知,极值点x1、x2是导函数等于零的两个根,根据根的分布建立不等关系,画出满足条件的区域,明确目标函数的几何意义,即可求得结论.
解答:解:求导函数可得f'(x)=x2+ax+2b
依题意知,方程f'(x)=0有两个根x1、x2,且x1∈(0,1),x2∈(1,2),
等价于f'(0)>0,f'(1)<0,f'(2)>0.
2b>0
1+a+2b<0
4+2a+2b>0

满足条件的(a,b)的平面区域为图中阴影部分,
三角形的三个顶点坐标为(-1,0),(-2,0),(-3,1),
分别代入a-2b得:-1-2×0=-1,-2-2×0=-2,-3-2×1=-5.
∴a-2b的范围是(-5,-1),
故选C.
点评:本题主要考查了利用导数研究函数的极值,以及二元一次不等式(组)与平面区域,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•德阳二模)已知
a
=(cos
x
2
3
sin
x
2
),
b
=(sin
x
2
,-sin
x
2
),f(x)=
a
b
+
3
2

(1)求f(x)的递增区间;
(2)在△ABC中,f(A)=1,AB=2,BC=3.求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)i为虚数单位,化简复数
i3(1+
3
i)
3
-i
的结果是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)设α,β是两个不同的平面,l是一条直线,以下命题中
①若l?β,l⊥α则α⊥β
②若l?β,l∥α则α∥β
③若l⊥α,α∥β则l⊥β
④若l∥α,α∥β则l∥β
正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德阳二模)已知数列{an}中,a1≠0,前n项和为Sn,Sn=pn+q,则{an}为等比数列是q=-1的(  )

查看答案和解析>>

同步练习册答案