精英家教网 > 高中数学 > 题目详情
2.在等比数列{an}中,a1+an=34,a2•an-1=64,且前n项和Sn=62,则项数n=5.

分析 利用等比数列的通项公式及其前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q,∵a2•an-1=64,∴a1•an=64,a1+an=34,
解得a1=32,an=2,或a1=2,an=32.
∴Sn=62=$\frac{32-2q}{1-q}$,或Sn=62=$\frac{2-32q}{1-q}$,
解得q=$\frac{1}{2}$或2.
∴$2=32×(\frac{1}{2})^{n-1}$,或32=2×2n-1
解得n=5.
故答案为:5.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有150种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设向量$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量且互相垂直,则($\overrightarrow{a}$+2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)等于(  )
A.2B.0C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某旅游景区对景区内宾馆每个月人住的游客人数进行统计,发现每年各个月份来宾馆入住的游客人数会发生周期性的变化,并且有以下规律:
①每年相同的月份,入住宾馆的游客人数基本相同;
②入住宾馆的游客人数在2月份最少,约为200人,随后逐月递增直到8月份达到最多,约为800人.若一年中入住宾馆的游客人数与月份之间的关系可以用一个正弦型三角函数来描述,
(1)请求出这个函数的解析式;
(2)请问哪几个月份入住宾馆的游客人数达到650人以上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=4x5+3x3+2x+1,则$f({log_2}3)+f({log_{\frac{1}{2}}}3)$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数$f(x+1)=\frac{4}{{{x^2}+2}}$,若f(a)=2,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足:a1=1,a2=2,正项数列{bn}满足bn=anan+1(n∈N*),若{bn}是公比为2的等比数列
(Ⅰ)求{an}的通项公式;
(Ⅱ)Sn为{an}的前n项和,且Sn>2016恒成立,求正整数n的最小值n0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.2014年某大学自主招生面试环节中,七位评委为一考生打出分数的茎叶图如图21,去掉一个最高分和一个最低分,所剩数据的平均数,众数和中位数分别为(  )
A.84,84,86B.84,84,84C.85,84,86D.85,84,84

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案