【题目】(1)设直线l过点(2,3)且与直线2x+y+1=0垂直,l与x轴,y轴分别交于A、B两点,求|AB|;
(2)求过点A(4,-1)且在x轴和y轴上的截距相等的直线l的方程.
【答案】(1)2; (2)x+4y=0或x+y-3=0
【解析】
(1)由题意知直线l的斜率为,设l的方程为x-2y+c=0,代入(2,3)可得c=4,即可求出A,B的坐标即可求出|AB|;
(2)分类讨论:直线过原点时和直线不过原点,分别求出即可。
(1)由题意知直线l的斜率为,设l的方程为x-2y+c=0,代入(2,3)可得c=4,
则x-2y+4=0,
令x=0,得y=2,令y=0,得x=-4,
∴A(-4,0),B(0,2),
则|AB|==2;
(2)当直线不过原点时,设直线l的方程为x+y=c,代入(4,-1)可得c=3,此时方程为x+y-3=0,
当直线过原点时,此时方程为x+4y=0.
科目:高中数学 来源: 题型:
【题目】两条平行直线和圆的位置关系定义为:若两条平行直线和圆有四个不同的公共点,则称两条平行线和圆“相交”;若两条平行直线和圆没有公共点,则称两条平行线和圆“相离”;若两平行直线和圆有一个、两个或三个不同的公共点,则称两条平行线和圆“相切”.已知直线:,:,和圆相切,则的取值范围是( )
A. 或B. 或
C. 或D. 或
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)已知过原点的动直线与圆 相交于不同的两点,.
(1)求圆的圆心坐标;
(2)求线段的中点的轨迹的方程;
(3)是否存在实数,使得直线 与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小波以游戏方式决定是参加学校合唱团还是参加学校排球队,游戏规则为:以0为起点,再从A1 , A2 , A3 , A4 , A5 , A6 , A7 , A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.
(1)求小波参加学校合唱团的概率;
(2)求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点的直线,分别与圆交于,两点.
(Ⅰ)若,,求的面积;
(Ⅱ)若直线过点,证明:为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,,,.
(Ⅰ)求证:平面平面;
(Ⅱ)试问在线段上是否存在一点,使锐二面角的余弦值为.若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴为非负半轴为极轴,与坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为.
(1)若直线与曲线有公共点,求倾斜角的取值范围;
(2)设为曲线上任意一点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com