【题目】某旅游为了解2015年国庆节期间参加某境外旅游线路的游客的人均购物消费情况,随机对50人做了问卷调查,得如下频数分布表:
人均购物消费情况 | [0,2000] | (2000,4000] | (4000,6000] | (6000,8000] | (8000,10000] |
额数 | 15 | 20 | 9 | 3 | 3 |
附:临界值表参考公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= ,其中n=a+b+c+d.
(1)做出这些数据的频率分布直方图并估计次境外旅游线路游客的人均购物的消费平均值;
(2)在调查问卷中有一项是“您会资助失学儿童的金额?”,调查情况如表,请补全如表,并说明是否有95%以上的把握认为资助数额多于或少于500元和自身购物是否到4000元有关?
人均购物消费不超过4000元 | 人均购物消费超过4000元 | 合计 | |
资助超过500元 | 30 | ||
资助不超过500元 | 6 | ||
合计 |
【答案】
(1)解:作出频率分布直方图如图所示:
人均购物消费平均值 =(1000×0.00015+3000×0.0002+5000×0.00009+7000×0.00003+9000×0.00003)×2000=3360.
(2)解:2×2列联表如下:
人均购物消费 不超过4000元 | 人均购物消费 超过4000元 | 合计 | |
资助超过500元 | 30 | 9 | 39 |
资助不超过500元 | 5 | 6 | 11 |
合计 | 35 | 15 | 50 |
K2= =4.046>3.841.
∴由95%的把握认为资助数额多余或少于500元与自身购物是否到4000元有关
【解析】(1)根据消费情况计算各组的频率及频率分布直方图的高度作图;(2)列联表计算K2 , 根据附表进行判断.
科目:高中数学 来源: 题型:
【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下表为函数部分自変量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
0.61 | -0.59 | -0.56 | -0.35 | 0 | 0.26 | 0.42 | 1.57 | 3.27 | |
0.07 | 0.02 | -0.03 | -0.22 | 0 | 0.21 | 0.20 | -10.04 | -101.63 |
据表中数据,研究该函数的一些性质;
(1)判断函数的奇偶性,并证明;
(2)判断函数在区间[0.55,0.6]上是否存在零点,并说明理由;
(3)判断的正负,并证明函数在上是单调递减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有150名学生参加了中学生环保知识竞赛,为了解成绩情况,现从中随机抽取50名学生的成绩进行统计(所有学生成绩均不低于60分).请你根据尚未完成的频率分布表,解答下列问题:
(1)写出M 、N 、p、q(直接写出结果即可),并作出频率分布直方图;
(2)若成绩在90分以上学生获得一等奖,试估计全校所有参赛学生获一等奖的人数;
(3)现从所有一等奖的学生中随机选择2名学生接受采访,已知一等奖获得者中只有2名女生,求恰有1名女生接受采访的概率.
分组 | 频数 | 频率 | |
第1组 | [60,70) | M | 0.26 |
第2组 | [70,80) | 15 | p |
第3组 | [80,90) | 20 | 0.40 |
第4组 | [90,100] | N | q |
合计 | 50 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分) 命题实数x满足(其中),命题实数满足
(Ⅰ)若,且为真,求实数的取值范围;
(Ⅱ)若是 的充分不必要条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有如下几个结论: ①相关指数R2越大,说明残差平方和越小,模型的拟合效果越好; ②回归直线方程:,一定过样本点的中心:③残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适; ④在独立性检验中,若公式,中的|ad-bc|的值越大,说明“两个分类变量有关系”的可能性越强.其中正确结论的个数有( )个.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an , 则 + + +…+ = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin2x的图象先向左平移 个单位长度,然后将所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应函数解析式为( )
A.
B.y=2cos2x
C.y=2sin2x
D.y=cosx
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com