精英家教网 > 高中数学 > 题目详情

【题目】设直线l的方程为(a+1)xy-2-a=0(a∈R).

(1)若直线l在两坐标轴上的截距相等,则直线l的方程为__________________________

(2)若a>-1,直线lxy轴分别交于MN两点,O为坐标原点,则△OMN的面积取最小值时,直线l对应的方程为________________.

【答案】 xy=0或xy-2=0 xy-2=0

【解析】(1)①当直线l经过坐标原点时,

可得a20

解得a=-2

所以直线l的方程为-xy0,即xy0

当直线l不经过坐标原点,即a2a1时,

由条件得

解得a0

所以直线l的方程为xy20

综上可得直线l的方程为xy0xy20

(2)(a1)xy2a0a>1

;令

所以

由于

所以

当且仅当,即a0时等号成立.

此时直线l的方程为xy20

答案(1) xy0xy20 (2) xy20

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论

型】解答
束】
18

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,关于的不等式的解集为,设

)求的值.

如何取值时,函数存在极值点,并求出极值点.

)若,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数时都取得极值.(1)求的值;(2)若对 恒成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技发展,手机成了人们日常生活中必不可少的通信工具,现在的中学生几乎都拥有了属于自己的手机了.为了调查某地区高中生一周使用手机的频率,某机构随机调查了该地区100名高中生某一周使用手机的时间(单位:小时),所取样本数据分组区间为,由此得到如图所示的频率分布直方图.

(1)求的值并估计该地区高中生一周使用手机时间的平均值;

(2)从使用手机时间在的四组学生中,用分层抽样方法抽取13人,则每层各应抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.

(1)求该椭圆的标准方程;

(2)若是椭圆上的动点,求线段中点的轨迹方程;

(3)过原点的直线交椭圆于点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200.在机器使用期间,如果备件不足再购买,则每个500.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:

x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元), 表示购机的同时购买的易损零件数.

=19,yx的函数解析式;

若要求需更换的易损零件数不大于的频率不小于0.5,的最小值;

假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足f(xy)=f(xf(y)且f(1)=.

(1)当n∈N*时,求f(n)的表达式;

(2)设ann·f(n),n∈N*,求证:a1a2a3+…+an<2;

(3)设bn=(9-n) n∈N*Sn为{bn}的前n项和,当Sn最大时,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为(  )

A. 6 B. 8

C. 12 D. 18

查看答案和解析>>

同步练习册答案