【题目】已知椭圆的左.右焦点分别为,为坐标原点.
(1)若斜率为的直线交椭圆于点,若线段的中点为,直线的斜率为,求的值;
(2)已知点是椭圆上异于椭圆顶点的一点,延长直线,分别与椭圆交于点,设直线的斜率为,直线的斜率为,求证:为定值.
科目:高中数学 来源: 题型:
【题目】已知函数,,其中且,.
(1)若函数f(x)与g(x)有相同的极值点(极值点是指函数取极值时对应的自变量的值),求k的值;
(2)当m>0,k = 0时,求证:函数有两个不同的零点;
(3)若,记函数,若,使,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+)ex﹣2x,若f(x)<0的解集中有且只有一个正整数,则实数k的取值范围为 ( )
A. [ ,)B. (,]
C. [)D. [)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】出租车几何学是由十九世纪的赫尔曼·闵可夫斯基所创立的.在出租车几何学中,点还是形如的有序实数对,直线还是满足的所有组成的图形,角度大小的定义也和原来一样.直角坐标系内任意两点,,定义它们之间的一种“距离”:;到两点P.Q“距离”相等的点的轨迹称为线段PQ的“垂直平分线”.已知点、、,请解决以下问题:
(1)求线段上一点到原点的“距离”;
(2)写出线段AB的“垂直平分线”的轨迹方程,并作出大致图像;
(3)定义:若三角形三边的“垂直平分线”交于一点,则该点称为三角形的“外心”.试判断 的“外心”是否存在,如果存在,求出“外心”;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列和满足:,且成等比数列,成等差数列.
(1)行列式,且,求证:数列是等差数列;
(2)在(1)的条件下,若不是常数列,是等比数列,
①求和的通项公式;
②设是正整数,若存在正整数,使得成等差数列,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在万众创新的大经济背景下,某成都青年面包店推出一款新面包,每个面包的成本价为元,售价为元,该款面包当天只出一炉(一炉至少个,至多个),当天如果没有售完,剩余的面包以每个元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近天的日需求量(单位:个),整理得下表:
日需求量 | |||||
频数 |
(1)根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;
(2)以天记录的各日需求量的频率代替各日需求量的概率,若该店这款新面包出炉的个数为,记当日这款新面包获得的总利润为(单位:元).求的分布列及其数学期望.
相关公式:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com