精英家教网 > 高中数学 > 题目详情

【题目】已知),函数.

1)求函数的单调区间;

2)若函数的图像在点处的切线的斜率为1,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

【答案】1)答案不唯一,见解析 2

【解析】

1)利用平面向量数量积的坐标表示公式求出函数的解析式,再对函数求导,根据导函数的正负性分类讨论求出函数的单调区间;

2)根据函数的图像在点处的切线的斜率为1,利用导数可以求出的值,对进行求导,由函数在区间上总存在极值,

问题可以转化为有两个不等实根且至少有一个在区间内,根据二次方程根的分布进行求解即可.

解:(1)由题意知定义域为,则

∴当时,函数的单调增区间是,单调减区间是

时,函数的单调增区间是,单调减区间是.

2)由,

∵函数在区间上总存在极值,

有两个不等实根且至少有一个在区间

又∵函数是开口向上的二次函数,且

上单调递减,

所以,由,解得

综上得:所以当内取值时,对于任意,函数,在区间上总存在极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义:若函数的导函数是奇函数,则称函数是“双奇函数”.函数

1)若函数是“双奇函数”,求实数的值;

2)若时,讨论函数的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植物感染病毒极易导致死亡,某生物研究所为此推出了一种抗病毒的制剂,现对株感染了病毒的该植株样本进行喷雾试验测试药效.测试结果分植株死亡植株存活两个结果进行统计;并对植株吸收制剂的量(单位:)进行统计规定:植株吸收在(包括)以上为足量,否则为不足量”.现对该株植株样本进行统计,其中植株存活株,对制剂吸收量统计得下表.已知植株存活制剂吸收不足量的植株共.

编号

吸收量

1)完成以下列联表,并判断是否可以在犯错误概率不超过的前提下,认为植株的存活制剂吸收足量有关?

吸收足量

吸收不足量

合计

植株存活

植株死亡

合计

2)若在该样本制剂吸收不足量的植株中随机抽取株,求这株中恰有植株存活的概率.

参考数据:

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点.

(1)证明:平面

(2)若点在棱上,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团通过与安哥拉国家石油公司合作,获得了安哥拉深海油田区块的开采权,集团在某些区块随机初步勘探了部分旧井,取得了地质资料.进入全面勘探时期后集团按网络点来布置井位来进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见下表:

井位

1

2

3

4

5

6

坐标

钻探深度

2

4

5

6

8

10

出油量

40

70

110

90

160

205

1)若16号旧井位置满足线性分布,借助前5组数据所求得的回归直线方程为,且,求,并估计的预报值;

2)现准备勘探新井7125),若通过,1357号井计算出的的值与(1)中的值的差不超过10%,则使用位置最接近的旧井,否则在新位置打井,请判断可否使用旧井?(注:其中的计算结果用四舍五入法保留一位小数)

参考数据:

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,解不等式

(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有甲乙丙丁四个人相互之间传球,从甲开始传球,甲等可能地把球传给乙丙丁中的任何一个人,依此类推.

1)通过三次传球后,球经过乙的次数为ξ,求ξ的分布列和期望;

2)设经过n次传球后,球落在甲手上的概率为an

i)求a1,a2,an

ii)探究:随着传球的次数足够多,球落在甲乙丙丁每个人手上的概率是否相等,并简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,则数列中的为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是等边三角形, 边上的动点(含端点),记,.

(1)求的最大值;

(2)若,求的面积.

查看答案和解析>>

同步练习册答案