ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬ÈôÍÖÔ²CÉϵÄÒ»µãA£¨1£¬
3
2
£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍΪ4£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãP£¬ÇóÖ¤£º|
OP
|£¼
1
2
£»
£¨3£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬QÊÇÍÖÔ²CÉϲ»Í¬ÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßQM£¬QNµÄбÂÊ·Ö±ðΪKQM•KQN£®ÎÊ£º¡°µãM£¬N¹ØÓÚÔ­µã¶Ô³Æ¡±ÊÇKQM•KQN=-
3
4
µÄʲôÌõ¼þ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃ
1
a2
+
9
4b2
=1
2a=4
£¬½âµÃ¼´¿É£»
£¨2£©ÀûÓÃÏ߶δ¹Ö±Æ½·ÖÏßµÄÐÔÖʺ͵ãÔÚÍÖÔ²Éϼ´¿ÉµÃ³ö£»
£¨3£©ÀûÓá°µãM£¬N¹ØÓÚÔ­µã¶Ô³Æ¡±ºÍбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ
1
a2
+
9
4b2
=1
2a=4
£¬½âµÃa=2£¬b2=3£®
¡àÍÖÔ²·½³ÌΪ
x2
4
+
y2
3
=1
£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬0£©£¬
Ôò|PM|=|PN|£¬¡à(x1-x0)2+
y
2
1
=(x2-y2)2+
y
2
2
£®£¨*£©
ÓÖM£¬NÔÚÍÖÔ²ÉÏ£¬¡à
y
2
1
=3-
3
4
x
2
1
£¬
y
2
2
=3-
3
4
x
2
2
£»
´úÈ루*£©µÃx0=
x1+x2
8
£¼
2+2
8
=
1
2
£¬ÔòÓÐ|
OP
|£¼
1
2
£®
£¨3£©¡°µãM£¬N¹ØÓÚÔ­µã¶Ô³Æ¡±ÊÇKQM•KQN=-
3
4
µÄ³äÒªÌõ¼þ£®
Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÔòN£¨-x1£¬-y1£©£®
ÓÚÊÇ
x
2
1
4
+
y
2
1
3
=1
£¬
x
2
0
4
+
y
2
0
3
=1
£¬µÃµ½
y
2
1
-
y
2
0
x
2
1
-
x
2
0
=-
3
4
£®
¡àkQMkQN=
y1-y0
x1-x0
-y1-y0
-x1-x0
=
y
2
1
-
y
2
0
x
2
1
-
x
2
0
=-
3
4
?µãM£¬N¹ØÓÚÔ­µã¶Ô³Æ£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢³äÒªÌõ¼þµÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
6m2
+
y2
2m2
=1
£¨m£¾0£©µÄ×ó£¬ÓÒ½¹µã£®
£¨1£©µ±P¡ÊC£¬ÇÒ
PF1
PF
2
=0
£¬|PF1|•|PF2|=8ʱ£¬ÇóÍÖÔ²CµÄ×ó£¬ÓÒ½¹µãF1¡¢F2£®
£¨2£©F1¡¢F2ÊÇ£¨1£©ÖеÄÍÖÔ²µÄ×ó£¬ÓÒ½¹µã£¬ÒÑÖª¡ÑF2µÄ°ë¾¶ÊÇ1£¬¹ý¶¯µãQµÄ×÷¡ÑF2ÇÐÏßQM£¬Ê¹µÃ|QF1|=
2
|QM|
£¨MÊÇÇе㣩£¬Èçͼ£®Ç󶯵ãQµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬ÇÒÍÖÔ²ÉÏÒ»µãP(1£¬
3
2
)
µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©Çó´ËÍÖÔ²·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl£ºy=kx+m£¨k¡Ù0£©ÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÇÒÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ý¶¨µãG(
1
8
£¬0)
£¬ÇókµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÉèF1¡¢F2·Ö±ðÊÇÍÖÔ²C£º
x2
6m2
+
y2
2m2
=1
£¨m£¾0£©µÄ×ó¡¢ÓÒ½¹µã£®
£¨I£©µ±p¡ÊC£¬ÇÒ
pF1
pF
2
=0
£¬|
pF1
|•|
pF
2
|=4
ʱ£¬ÇóÍÖÔ²CµÄ×ó¡¢ÓÒ½¹µãF1¡¢F2µÄ×ø±ê£®
£¨II£©F1¡¢F2ÊÇ£¨I£©ÖеÄÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬ÒÑÖª¡ÑF2µÄ°ë¾¶ÊÇ1£¬¹ý¶¯µãQ×÷µÄÇÐÏßQM£¨MΪÇе㣩£¬Ê¹µÃ|QF1|=
2
|QM|
£¬Ç󶯵ãQµÄ¹ì¼££®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
x2
b2
=1£¨a£¾b£¾0£©µÄ½¹µã£¬ÈôÍÖÔ²CÉÏ´æÔÚµãP£¬Ê¹Ï߶ÎPF1µÄ´¹Ö±Æ½·ÖÏß¹ýµãF2£¬ÔòÍÖÔ²ÀëÐÄÂʵÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÕØÇì¶þÄ££©ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×óÓÒ½¹µã£®
£¨1£©ÉèÍÖÔ²CÉϵĵã(
2
2
£¬
3
2
)
µ½F1£¬F2Á½µã¾àÀëÖ®ºÍµÈÓÚ2
2
£¬Ð´³öÍÖÔ²CµÄ·½³Ì£»
£¨2£©Éè¹ý£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĽ¹µãF2ÇÒбÂÊΪ1µÄÖ±ÏßÓëÆäÏཻÓÚA£¬B£¬Çó¡÷ABF1µÄÃæ»ý£»
£¨3£©ÉèµãPÊÇÍÖÔ²C ÉϵÄÈÎÒâÒ»µã£¬¹ýÔ­µãµÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±Ö±ÏßPM£¬PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPN£¬kPNÊÔ̽¾¿kPN•kPNµÄÖµÊÇ·ñÓëµãP¼°Ö±ÏßlÓйأ¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸