精英家教网 > 高中数学 > 题目详情
如果点P在平面区域
2x-y+2≥0
x+y-2≤0
2y-1≥0
上,点Q在曲线x2+(y+3)2=1上,那么|PQ|的最小值为
5
2
5
2
分析:作出可行域,将|PQ|的最小值转化为圆心到可行域的最小值,结合图形,求出|CP|的最小值,减去半径得PQ|的最小值.
解答:解:作出可行域,要使|PQ|的最小,
只要圆心C(0,-3)到P的距离最小,
结合图形当P(0,
1
2
)时,|CP|最小为
1
2
+3=
7
2

又因为圆的半径为1
故|PQ|的最小为
7
2
-1
=
5
2

故答案为:
5
2
点评:本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与(0,-3)之间的距离问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x-2y+1≤0
x+y-2≤0
上,点Q在曲线x2+(y+2)2=2上,那么|PQ|的最小值为
5
-
2
5
-
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
y-1≥0
内,点Q在曲线(x+2)2+y2=
1
4
上,那么|PQ|的最小值为(  )
A、
1
2
B、
13
-1
2
C、
10
-1
2
D、
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如果点P在平面区域
2x-y+2≥0
x+y-2≤0
2y-1≥0
内,点Q(0,-2),那么|PQ|的最小值为(  )

查看答案和解析>>

同步练习册答案