【题目】抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(1)求p的值.
(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.
(3)求直线l的斜率的取值范围.
【答案】(1)2;(2);(3)
【解析】
(1)联立切线方程与抛物线方程,根据相切时判别式为0即可求得p的值。
(2)根据|AF|+|BF|=8,结合抛物线定义可转化为与A、B横坐标相关的等式,从而求得x1+x2=6.设C点坐标(m,0),因为C在AB的垂直平分线上,所以|AC|=|BC|。然后根据两点间距离公式,代入两个横坐标的和即可求得m的值,进而确定过定点。
(3)设AB的中点为M(x0,y0),表示出直线l方程y=k1(x-5)。将AB中点坐标代入方程后得到M的坐标与直线斜率k之间的关系。根据中点M的在抛物线内可得不等式,进而求得k的范围。
(1)因为抛物线y2=2px(p>0)与直线y=x+1相切,所以由得y2-2py+2p=0(p>0)有两个相等实根,所以Δ=4p2-8p=4p(p-2)=0,解得p=2.
(2)抛物线y2=4x的准线x=1.且|AF|+|BF|=8,
所以由定义得x1+x2+2=8,则x1+x2=6.
设直线AB的垂直平分线l与x轴的交点C(m,0).
由C在AB的垂直平分线上,从而|AC|=|BC|,
即(x1-m)2+=(x2-m)2+,
所以(x1-m)2-(x2-m)2=,
即(x1+x2-2m)(x1-x2)=4x2-4x1=-4(x1-x2).
因为x1≠x2,所以x1+x2-2m=-4.
又因为x1+x2=6,所以m=5.
所以点C的坐标为(5,0).
即直线AB的垂直平分线l与x轴的交点为定点(5,0).
(3)设直线l的斜率为k1,由(2)可设直线l方程为y=k1(x-5).
设AB的中点M(x0,y0),由x0==3,可得M(3,y0).
因为直线l过点M(3,y0),所以y0=-2k1.
又因为点M(3,y0)在抛物线y2=4x的内部,
所以<12.即4<12,则<3.
因为x1≠x2,则k1≠0.
所以k1的取值范围为(-,0)∪(0,).
科目:高中数学 来源: 题型:
【题目】设随机变量ξ服从正态分布N(0,1),则下列结论正确的是( )
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0);③P(|ξ|<a)=1-2P(ξ<a)(a>0);④P(|ξ|<a)=1-P(|ξ|≥a)(a>0).
A. ①② B. ②③
C. ①④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C与椭圆E: 共焦点,并且经过点 ,
(1)求椭圆C的标准方程;
(2)在椭圆C上任取两点P、Q,设PQ所在直线与x轴交于点M(m,0),点P1为点P关于轴x的对称点,QP1所在直线与x轴交于点N(n,0),探求mn是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P是椭圆E:+y2=1上的任意一点,F1,F2是它的两个焦点,O为坐标原点,动点Q满足.
(1)求动点Q的轨迹方程;
(2)若已知点A(0,-2),过点A作直线l与椭圆E相交于B,C两点,求△OBC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=xln(ax)(a>0)
(1)设F(x)= 2+f'(x),讨论函数F(x)的单调性;
(2)过两点A(x1 , f′(x1)),B(x2f′(x2))(x1<x2)的直线的斜率为k,求证: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆C:的离心率,F1,F2分别为左、右焦点,过F1的直线交椭圆C于P,Q两点,且的周长为8.
(1)求椭圆c的方程;
(2)设过点M(3,0)的直线交椭圆C于不同两点A,B,N为椭圆上一点,且满足(O为坐标原点),当时,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动圆经过点M(a﹣2,0),N(a+2,0),P(0,﹣2),其中a∈R.
(1)求动圆圆心的轨迹E的方程;
(2)过点P作直线l交轨迹E于不同的两点A、B,直线OA与直线OB分别交直线y=2于两点C、D,记△ACD与△BCD的面积分别为S1 , S2 . 求S1+S2的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,底面是以∠ABC为直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中点,点E在棱AA1上,要使CE⊥平面B1DE,则AE=_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com