精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn,且a1=10,an+1=9Sn+10.
(Ⅰ)求证:{an}是等比数列;
(Ⅱ)设bn=$\frac{2}{(lg{a}_{n})(lg{a}_{n+1})}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)由an+1=9Sn+10化简可得an+1=10an,(n≥2);再求得a1=10,a2=100,a3=1000;从而证明;
(Ⅱ)由(Ⅰ)知,an=10n,lgan=n,从而化简bn=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),从而求和.

解答 证明:(Ⅰ)∵an+1=9Sn+10,∴an=9Sn-1+10,
∴an+1-an=9an,∴an+1=10an,(n≥2);
∵a1=10,a2=9S1+10=90+10=100,
a3=9S2+10=990+10=1000;
故数列{an}是以10为首项,10为公比的等比数列;
(Ⅱ)由(Ⅰ)知,an=10n,lgan=n,
故bn=$\frac{2}{(lg{a}_{n})(lg{a}_{n+1})}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
故Tn=2(1-$\frac{1}{2}$)+2($\frac{1}{2}$-$\frac{1}{3}$)+…+2($\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)
=$\frac{2n}{n+1}$.

点评 本题考查了an与Sn的关系式的应用及等比数列的判断,同时考查了裂项求和法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.试证对于任何整数a,数8a+7不是三个整数的平方和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线l过点P(1,0),且与以A(2,1),B(0,$\sqrt{3}$)为端点线段有公共点,则直线l斜率的取值范围为(-∞,-$\sqrt{3}$]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+$\frac{1}{x+b}$(a,b∈Z).
(1)求f′(x);
(2)若曲线y=f(x)在点(2,1)处的切线与x轴平行,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图所示,在单位圆O的某一直径上随机的取一点Q,求过点Q且与径垂直的弦长长度不超过1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=1-$\frac{2}{{a}^{x}+1}$(a>1).
(1)求证函数f(x)为奇函数;
(2)求函数f(x)的值域;
(3)证明f(x)在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知sinθ,cosθ是关于x的方程x2+ax-a=0(a∈R)的两根.
(1)求sin3θ+cos3θ的值;
(2)求tanθ+$\frac{1}{tanθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,已知a4+a8=26,则该数列前11项和S11=(  )
A.58B.88C.143D.176

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用五点法画出函数y=1-sinx(x∈[0,2π])的简图,并判断函数的单调性.

查看答案和解析>>

同步练习册答案