精英家教网 > 高中数学 > 题目详情

设定义在上的奇函数
(1).求值;(4分)
(2).若上单调递增,且,求实数的取值范围.(6分)

(1)0;(2).

解析试题分析:(1)因为是奇函数,且在处有意义,所以,即可求得的值;
(2)因为是奇函数,得到是单调递增的,不等式利用函数的单调性脱去,得一不等式,且需要不等式在函数定义域范围内有意义,最后就可求出的取值范围.
试题解析:(1)因为函数是定义在上的奇函数,所以,解得
(2)因为函数是增函数,又因为是奇函数,所以是单调递增的;

又需要不等式在函数定义域范围内有意义,所以
解①②得
所以,的取值范围为
考点:1.函数奇偶性的性质;2.函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,指出的单调递减区间和奇偶性(不需说明理由);
(2)当时,求函数的零点;
(3)若对任何不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的最小值为,且关于的一元二次不等式的解集为
(Ⅰ)求函数的解析式;
(Ⅱ)设其中,求函数时的最大值
(Ⅲ)若为实数),对任意,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,判断函数上的单调性并用定义证明;
(2)若函数上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象分别与轴、轴交于两点,且,函数,当满足不等式,时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-3,3]上的奇函数,且当x∈[0,3]时,f(x)=x|x-2|

⑴在平面直角坐标系中,画出函数f(x)的图象
⑵根据图象,写出f(x)的单调增区间,同时写出函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是定义在上的增函数,且
(1)、求的值;(2)、若,解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a,b均为正常数).
(1)求证:函数内至少有一个零点;
(2)设函数在处有极值,
①对于一切,不等式恒成立,求的取值范围;
②若函数f(x)在区间上是单调增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)在区间上画出函数的图象 ;
(2)设集合. 试判断集合之间
的关系,并给出证明 ;
(3)当时,求证:在区间上,的图象位于函数图象的上方.
   

查看答案和解析>>

同步练习册答案