精英家教网 > 高中数学 > 题目详情
已知A(1,0),B(-2,0),动点M满足∠MBA=2∠MAB(∠MAB≠0).
(1)求动点M的轨迹E的方程;
(2)若直线l:,且轨迹E上存在不同两点C、D关于直线l对称.
①求实数b的取值范围;
②是否可能有A、B、C、D四点共圆?若可能,求实数b的值;若不可能,请说明理由.

【答案】分析:(1)如何体现动点M满足的条件∠MBA=2∠MAB是解决本题的关键.用动点M的坐标体现∠MBA=2∠MAB的最佳载体是直线MA、MB的斜率.
(2)先设C(x1,y1),D(x2,y2),CD的中点(x,y)(x1,x2,x<-1).由点差法有y=-x.又;所以.又直线CD的方程为.将直线的方程代入(1)的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用到角公式即可求得b值,从而解决问题.
解答:解:(1)设动点M的坐标为(x,y),则
由∠MBA=2∠MAB(∠MAB≠0),得
化简得3x2-y2=3(当时也满足).
显然,动点M在线段AB的中垂线的左侧,且∠MAB≠0,
故轨迹E的方程为 3x2-y2=3(x<-1).
(2)设C(x1,y1),D(x2,y2),CD的中点(x,y)(x1,x2,x<-1).
由点差法有 ,即y=-x
;所以
①由3得,
②直线CD的方程为,即
上式代入3x2-y2=3得,8x2+12bx+3b2+4=0,
所以△=16(3b2-8),
若A、B、C、D四点共圆,则∠CAD=60°,由到角公式可得 
即 ,即 ;解得
故可能有A、B、C、D四点共圆,此时
点评:求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法,本题主要用直接法,直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第二象限内,∠AOC=
6
,且|OC|=2,若
OC
OA
OB
,则λ,μ的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(1,0),B(4,0),动点T(x,y)满足
|TA|
|TB|
=
1
2
,设动点T的轨迹是曲线C,直线l:y=kx+1与曲线C交于P,Q两点.
(1)求曲线C的方程;
(2)若
OP
OQ
=-2
,求实数k的值;
(3)过点(0,1)作直线l1与l垂直,且直线l1与曲线C交于M,N两点,求四边形PMQN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,0),B(1,0),若点C(x,y)满足2
(x-1)2+y2
=|x-4|,则|AC|+|BC|
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知A(-1,0),B(1,0),点M满足
MA
MB
=
2
,则直线AM的斜率的取值范围为
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•南京一模)已知A(-1,0),B(2,1),C(1,-1).若将坐标平面沿x轴折成直二面角,则折后∠BAC的余弦值为
3
5
2
3
5
2

查看答案和解析>>

同步练习册答案