精英家教网 > 高中数学 > 题目详情

已知函数的定义域为
(1)求
(2)当时,求的最小值.

(Ⅰ);(Ⅱ)=.

解析试题分析:(Ⅰ)利用使函数解析式有意义的的取值范围求解函数的定义域;(Ⅱ)分析二次函数在区间上的单调性,然后求最值.
试题解析:(Ⅰ)依题意,,解得 
(Ⅱ)=
.
①若,即时,==
②若,即时,
时,=
考点:函数的定义域,二次函数的最值,考查学生的分析计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用单调性的定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m为常数,函数为奇函数.
(1)求m的值;
(2)若,试判断的单调性(不需证明);
(3)若,存在,使,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设定义域为的函数为实数)。
(1)若是奇函数,求的值;  
(2)当是奇函数时,证明对任何实数都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
⑴求的取值范围;
⑵当取最大值时,解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,解不等式
(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数, .
(1)若, 函数 在其定义域是增函数,求的取值范围;
(2)在(1)的结论下,设函数的最小值;
(3)设函数的图象与函数的图象交于点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求出的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知函数为有理数且),求函数的最小值;
(2)①试用(1)的结果证明命题:设为有理数且,若时,则
②请将命题推广到一般形式,并证明你的结论;
注:当为正有理数时,有求导公式

查看答案和解析>>

同步练习册答案