精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1-a+lnx
x
,a∈R.
(1)求f(x)的极值;
(2)若关于x的不等式
lnx
x
e(
2
k+1
-2)
在(0,+∞)上恒成立,求k的取值范围;
(3)证明:
ln22
22
+
ln32
32
+…+
lnn2
n2
2n2-n-1
2(n+1)
(n∈N*,n≥2)
分析:(1)先求函数的定义域,在函数定义域内连续可导,讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值点,求出极值.
(2)要使不等式
lnx
x
e(
2
k+1
-2)
在(0,+∞)恒成立,只需求函数
lnx
x
在(0,+∞)的最大值,建立参数k的等量关系,解之即可.
(3)先由(1)知,lnx-x+1≤0,从而有lnn2≤n2-1,再进行求和,利用放缩法,然后用立项求和的方法进行求和即可得证.
解答:解:(1)f′(x)=
a-lnx
x2
,令f'(x)=0,得x=ea,当x∈(0,ea)时,f'(x)>0
函数f(x)为增函数,当x∈(ea,+∞)时,f'(x)<0,函数f(x)为减函数,
故f(x)有极大值为f(ea)=e-a,(5分)
(2)由(1)知f(x)≤
1
ea
,令a=1,
lnx
x
1
e

故只需
-2k
k+1
≥-1
,所以得-1<k≤1(10分)
(3)由(1)知f(x)≤e-a,令a=0,则有lnx≤x-1,
∵n∈N,n≥2∴lnn2≤n2-1,
lnn2
n2
n2-1
n2
=1-
1
n2

ln22
22
+
ln32
32
++
lnn2
n2
≤(1-
1
22
)+(1-
1
32
)++(1-
1
n2
)

=(n-1)-(
1
22
+
1
32
++
1
n2
)
<(n-1)-(
1
2
-
1
3
+
1
3
-
1
4
++
1
n
-
1
n+1
)

=(n-1)-(
1
2
-
1
n+1
)
=
2n2-n-1
2(n+1)
(14分)
点评:本题主要考查了利用导数研究函数的极值,以及恒成立与不等式的证明问题,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案