精英家教网 > 高中数学 > 题目详情
5.设U=R,M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$},N={x|y=lg(x2+3x)},则(∁UM)∩N=(  )
A.(-∞,-3]∪(2,+∞)B.(-∞,-3)∪(0,+∞)C.(-∞,-3)∪(2,+∞)D.(-∞,0)∪(2,+∞)

分析 由全集U=R,先求出CUM,再由集合N能够求出N∩(∁UM).

解答 解:∵全集U=R,
M={y|y=2x+1,-$\frac{1}{2}$≤x≤$\frac{1}{2}$}=[0,2],
∴CUM=(-∞,0)∪(2,+∞),
∵x2+3x>0,解得x>0或x<-3
∴集合N=(-∞,-3)∪(0,+∞)
∴N∩(∁UM)=(-∞,-3)∪(2,+∞)
故选C.

点评 本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.角α的终边经过点(2,-1),则sinα+cosα的值为(  )
A.-$\frac{{3\sqrt{5}}}{5}$B.$\frac{{3\sqrt{5}}}{5}$C.-$\frac{{\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若正实数a,b满足(2a+b)2=1+6ab,则$\frac{ab}{2a+b+1}$的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,O为△ABC的外心,D为BC边上的中点,c=4,$\overrightarrow{AO}$•$\overrightarrow{AD}$=5,sinC+sinA-4sinB=0,则cosA=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直经为(  )
A.4B.6C.4或$\sqrt{51}$D.6或$\sqrt{53}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的离心率$e∈[{\sqrt{2},2}]$,则该双曲线的渐近线与实轴所成角的取值范围是$\frac{π}{4}$≤θ≤$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.f(x)是偶函数,且在(-∞,0)上是增函数,则下列关系成立的是(  )
A.f(-2)<f(1)<f(3)B.f(1)<f(-2)<f(3)C.f(3)<f(-2)<f(1)D.f(-2)<f(3)<f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.抛物线y=ax2(a≠0)的焦点坐标为(  )
A.(0,$\frac{a}{4}$)或(0,-$\frac{a}{4}$)B.(0,$\frac{1}{4a}$)或(0,-$\frac{1}{4a}$)C.$(0,\frac{1}{4a})$D.$(\frac{1}{4a},0)$

查看答案和解析>>

同步练习册答案