精英家教网 > 高中数学 > 题目详情
数列{an}中,对任意n∈N*,a1+a2+…+an=2n-1,则a12+a22+…+an2等于(  )
A、(2n-1)2
B、
(2n-1)2
3
C、4n-1
D、
4n-1
3
考点:数列的求和
专题:等差数列与等比数列
分析:当n≥2时,由a1+a2+…+an=2n-1可得a1+a2+…+an-1=2n-1-1,因此an=2n-1,当n=1时也成立.再利用等比数列的前n项和公式可得a12+a22+…+an2
解答: 解:当n≥2时,由a1+a2+…+an=2n-1可得a1+a2+…+an-1=2n-1-1,
∴an=2n-1,当n=1时也成立.
a
2
n
=4n-1
∴a12+a22+…+an2=
4n-1
4-1
=
4n-1
3

故选:D.
点评:本题考查了递推式的意义、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|x≤-2或x≥5},B={x|x≤2}.求
(Ⅰ)∁U(A∪B);
(Ⅱ)记∁U(A∪B)=D,C={x|2a-3≤x≤-a},且C∩D=C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2+a
bx-c
(b,c∈N+).若方程f(x)=x的根为0和2,且f(-2)<-
1
2

(1)求函数f(x)的解析式;
(2)已知各项均不为零的数列{an}满足:4Snf(
1
an
)=1(Sn为该数列前n项和),求该数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

某旅游景点经营者欲增加欲增加景点服务设施以提高旅游增加量,经过调研发现,在控制投入成本的前提下,旅游增加值y(万元)与投入成本x(万元)之间满足:y=-ax2+
51
50
x-lnx+ln10(10≤x≤100),其中实数a为常数,且当投入成本为10万元时,旅游增加值为9.2万元.
(Ⅰ)求实数a的值;
(Ⅱ)当投入成本为多少万元时,旅游增加值y取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-lnx,若f(x)存在两个零点,则实数a的取值范围是(  )
A、(0,
1
2e
B、(0,1)
C、(-∞,
1
2e
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

欧洲很多国家及美国已经要求禁止在校园出售软饮料,禁止向中小学生销售可口可乐等高热量碳酸饮料,原因是这些饮料被认为是造成儿童 肥胖问题日益严重的主要原因之一.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到列联表:平均每天喝500mL以上为常喝,体重超过50kg为肥胖.
常喝不常喝合计
肥胖2
不肥胖18
合计30
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为
4
15

(1)请将列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
P(K2≥K)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2+4x+5
+
x2-4x+8
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一条长为2的线段,它的三个视图分别是长为
3
,a,b的三条线段,则ab的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y=-x2+6x-7的对称轴方程是直线(  )
A、x=6B、x=3
C、x=-3D、x=-6

查看答案和解析>>

同步练习册答案