精英家教网 > 高中数学 > 题目详情

【题目】古代著名数学典籍《九章算术》在商功篇章中有这样的描述:今有圆亭,下周三丈,上周二丈,问积几何?其中圆亭指的是正圆台体形建筑物.算法为:“上下底面周长相乘,加上底面周长自乘、下底面周长自乘的和,再乘以高,最后除以36.”可以用程序框图写出它的算法,如图,今有圆亭上底面周长为6,下底面周长为12,高为3,则它的体积为( )

A. 32 B. 29 C. 27 D. 21

【答案】D

【解析】

由已知中的程序语句可知:该程序的功能是计算并输出变量V的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

由题意可得:a=6,b=12,h=3,

可得:A=3×(6×6+12×12+6×12)=756,V==21.

故程序输出V的值为21.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

2)判断函数的单调性,并用定义证明;

3)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计一次性饮酒4.8两诱发脑血管病的概率为0.04,一次性饮酒7.2两诱发脑血管病的概率为0.16.已知某公司职员一次性饮酒4.8两未诱发脑血管病,则他还能继续饮酒2.4两不诱发脑血管病的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面是菱形的四棱锥, 平面 分别为的中点,设直线与平面交于点.

1已知平面平面求证: .

2求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】物联网(Internet of Things,缩写:IOT)是基于互联网、传统电信网等信息承载体,让所有能行使独立功能的普通物体实现互联互通的网络. 其应用领域主要包括运输和物流、工业制造、健康医疗、智能环境(家庭、办公、工厂)等,具有十分广阔的市场前景. 现有一家物流公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:仓库每月土地占地费(单位:万元),仓库到车站的距离(单位:千米,),其中成反比,每月库存货物费(单位:万元)与成正比;若在距离车站9千米处建仓库,则分别为2万元和7. 2万元. 这家公司应该把仓库建在距离车站多少千米处,才能使两项费用之和最小?最小费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=(x-2)ex+a(x-1)2,讨论f (x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f1x),f2x),hx),如果存在实数ab使得hx=af1x+bf2x),那么称hx)为f1x),f2x)的生成函数.

1)函数f1x=x2xf2x=x2+x+1hx=x2x+1hx)是否为f1x),f2x)的生成函数?说明理由;

2)设f1x=1xf2x=,当a=b=1时生成函数hx),求hx)的对称中心(不必证明);

3)设f1x=xx≥2),取a=2b0,生成函数hx),若函数hx)的最小值是5,求实数b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为已知实常数,,则下列命题中错误的是(

A.,则对任意实数恒成立;

B.,则函数为奇函数;

C.,则函数为偶函数;

D.时,若,则 ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A中任意两数之和不能被5整除,则的最大值为(

A. 17B. 18C. 15D. 16

查看答案和解析>>

同步练习册答案