【题目】某地区实施“光盘行动”以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足升的,按升计算(如剩余升,记为剩余升).例如:结账时,某桌剩余酒量恰好为升,则该桌的每位客人还应付元.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的组数据(其中表示饮酒人数,(升)表示饮酒量):,,,,.
剩余酒量(单位:升) | 升以上(含升) | ||||
结账时的倍率 |
(1)求由这组数据得到的关于的回归直线方程;
(2)小王约了位朋友坐在一桌饮酒,小王及朋友用量杯共量取了升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请位或位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?
参考数据:回归直线的方程是,其中,.
科目:高中数学 来源: 题型:
【题目】众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是;②当时,直线与黑色阴影部分有公共点;③当时,直线与黑色阴影部分有两个公共点.其中所有正确结论的序号是( )
A.①B.①②C.①③D.①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,定义为两点AB的“切比雪夫距离”,又设点P及上任意一点Q,称的最小值为点P到直线的“切比雪夫距离”,记作,给出下列三个命题:
①对任意三点A、B、C,都有
②已知点P(2,1)和直线,则
③定点动点P满足则点P的轨迹与直线(为常数)有且仅有2个公共点.
其中真命题的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱中,底面是正三角形,侧棱底面.D,E分别是边BC,AC的中点,线段与交于点G,且,.
(1)求证:∥平面;
(2)求证:⊥平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为矩形,平面平面,,,,为中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在点,使得?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于集合,,,.集合中的元素个数记为.规定:若集合满足,则称集合具有性质.
(I)已知集合,,写出,的值;
(II)已知集合,为等比数列,,且公比为,证明:具有性质;
(III)已知均有性质,且,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:①设,则是的充要条件;②已知命题、、满足“或”真,“或”也真,则“或”假;③若,则使得恒成立的的取值范围为{或};④将边长为的正方形沿对角线折起,使得,则三棱锥的体积为.其中真命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:(x﹣a)2+(y﹣2)2=4(a>0)及直线l:x﹣y+3=0.当直线l被圆C截得的弦长为时,求
(Ⅰ)a的值;
(Ⅱ)求过点(3,5)并与圆C相切的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.
(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?
(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com