精英家教网 > 高中数学 > 题目详情
对于n∈N*(n≥2),定义一个如下数阵:,其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0.设
(Ⅰ)当n=6时,试写出数阵A66并计算
(Ⅱ)若[x]表示不超过x的最大整数,求证:=
(Ⅲ)若,求证:g(n)-1<f(n)<g(n)+1.
【答案】分析:(Ⅰ)依题意可得,. 
(Ⅱ)由题意可知,t(j)是数阵Ann的第j列的和,因此是数阵Ann所有数的和.而数阵Ann所有数的和也可以考虑按行相加.对任意的1≤i≤n,不超过n的倍数有1i,2i,…,.因此数阵Ann的第i行中有个1,其余是0,即第i行的和为.从而得到结果.
(Ⅲ)由[x]的定义可知,,所以.所以.再考查定积分,根据曲边梯形的面积的计算即可证得结论.
解答:解:(Ⅰ)依题意可得,. 
(Ⅱ)由题意可知,t(j)是数阵Ann的第j列的和,因此是数阵Ann所有数的和.
而数阵Ann所有数的和也可以考虑按行相加.
对任意的1≤i≤n,不超过n的倍数有1i,2i,…,
因此数阵Ann的第i行中有个1,其余是0,即第i行的和为
所以=
(Ⅲ)证明:由[x]的定义可知,
所以.所以
考查定积分,将区间[1,n]分成n-1等分,则的不足近似值为的过剩近似值为. 所以
所以<g(n).所以g(n)-1<g(n)+1.
所以g(n)-1<f(n)<g(n)+1.
点评:本小题主要考查高阶矩阵、矩阵的应用、定积分等基础知识,考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•芜湖二模)已知函数f(x)=
1
2
(x+
1
x
),x≥0
,an+1=f(an),对于任意的n∈N*,都有an+1<an
(Ⅰ)求a1的取值范围;
(Ⅱ)若a1=
3
2
,证明an<1+
1
2n+1
(n∈N+,n≥2).
(Ⅲ)在(Ⅱ)的条件下证明
a1
a2
+
a2
a3
+…+
an
an+1
-n<
2
+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为R,数列{an}满足an=f(an-1)(n∈N*且n≥2).
(Ⅰ)若数列{an}是等差数列,a1≠a2,且f(an)-f(an-1)=k(an-an-1)(k为非零常数,n∈N*且n≥2),求k的值;
(Ⅱ)若f(x)=kx(k>1),a1=2,bn=lnan(n∈N*),数列{bn}的前n项和为Sn,对于给定的正整数m,如果
S(m+1)nSmn
的值与n无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于n∈N*(n≥2),定义一个如下数阵:Ann=
a11a12a1n
a21a22a2n
an1an2ann
,其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0.设t(j)=
n
i=1
aij=a1j+a2j+…+anj

(Ⅰ)当n=6时,试写出数阵A66并计算
6
j=1
t(j)

(Ⅱ)若[x]表示不超过x的最大整数,求证:
n
j=1
t(j)
=
n
i=1
n
i
 ]

(Ⅲ)若f(n)=
1
n
n
j=1
t(j)
g(n)=
n
1
1
x
dx
,求证:g(n)-1<f(n)<g(n)+1.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区一模)若数列{bn}满足:对于n∈N*,都有bn+2-bn=d(常数),则称数列{bn}是公差为d的准等差数列.如:若cn=
4n-1,当n为奇数时
4n+9,当n为偶数时.
则{cn}是公差为8的准等差数列.
(1)求上述准等差数列{cn}的第8项c8、第9项c9以及前9项的和T9
(2)设数列{an}满足:a1=a,对于n∈N*,都有an+an+1=2n.求证:{an}为准等差数列,并求其通项公式;
(3)设(2)中的数列{an}的前n项和为Sn,若S63>2012,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区一模)对于n∈N*(n≥2),定义一个如下数阵:Ann=
a11a12a1n
a21a22a2n
an1an2ann

其中对任意的1≤i≤n,1≤j≤n,当i能整除j时,aij=1;当i不能整除j时,aij=0.
(Ⅰ)当n=4时,试写出数阵A44
(Ⅱ)设t(j)=
n
i=1
aij=a1j+a2j+…+anj
.若[x]表示不超过x的最大整数,
求证:
n
j=1
t(j)
=
n
i=1
n
i
 ]

查看答案和解析>>

同步练习册答案