【题目】下列判断正确的是( )
A.“”是“”的充分不必要条件
B.函数的最小值为2
C.当时,命题“若,则”为真命题
D.命题“,”的否定是“,”
科目:高中数学 来源: 题型:
【题目】交大设计学院植物园准备用一块边长为4百米的等边ΔABC田地(如图)建立芳香植物生长区、植物精油提炼处与植物精油体验点.田地内拟建笔直小路MN、AP,其中M、N分别为AC、BC的中点,点P在CN上.规划在小路MN和AP的交点O(O与M、N不重合)处设立植物精油体验点,图中阴影部分为植物精油提炼处,空白部分为芳香植物生长区,A、N为出入口(小路宽度不计).为节约资金,小路MO段与OP段建便道,供芳香植物培育之用,费用忽略不计,为车辆安全出入,小路AO段的建造费用为每百米4万元,小路ON段的建造费用为每百米3万元.
(1)若拟建的小路AO段长为百米,求小路ON段的建造费用;
(2)设∠BAP=,求的值,使得小路AO段与ON段的建造总费用最小,并求岀最小建造总费用(精确到元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为D的函数y=f(x),如果存在区间[m,n]D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数不存在“和谐区间”.
(3)已知:函数(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n﹣m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知(m,n为常数),在处的切线方程为.
(Ⅰ)求的解析式并写出定义域;
(Ⅱ)若,使得对上恒有成立,求实数的取值范围;
(Ⅲ)若有两个不同的零点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的右焦点为,过作轴的垂线交椭圆于点(点在轴上方),斜率为的直线交椭圆于,两点,过点作直线交椭圆于点,且,直线交轴于点.
(1)设椭圆的离心率为,当点为椭圆的右顶点时,的坐标为,求的值.
(2)若椭圆的方程为,且,是否存在使得成立?如果存在,求出的值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com