精英家教网 > 高中数学 > 题目详情
20.对于给定的正数K,定义函${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$.已知函数$f(x)={(\frac{1}{3})^{{x^2}-4x}}(0≤x<5)$,对其定义域内的任意x,恒有fk(x)=f(x),则(  )
A.K的最小值为$\frac{1}{243}$B.K的最大值为$\frac{1}{243}$C.K的最小值为81D.K的最大值为81

分析 由已知条件可得,K≥f(x)在[0,5)恒成立,即K≥f(x)max,结合指数函数与二次函数的性质可求函数f(x)的最小值,从而可求

解答 解:因为对于任意的x∈[0,5),恒有fk(x)=f(x),
由已知条件可得,K≥f(x)在[0,5)恒成立,
∴K≥f(x)max
设t=x2-4x=(t-2)2-4,
∴t=x2-4x,在[0,2)上单调递减,在[2,5)上单调递增,
∵y=$(\frac{1}{3})^{x}$在R上为减函数,
∴f(x)=$(\frac{1}{3})^{t}$在[0,2)上单调递增,在[2,5)上单调递减,
∴f(x)max=f(2)=81,
∴K≥81,
即k的最小值为81,
故选:C.

点评 本题以新定义为载体,主要考查了阅读、转化的能力,解决本题的关键是利用已知定义转化为函数的恒成立问题,结合二次函数的性质可进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.求与直线x=-2和圆A:(x-3)2+y2=1都相切的动圆圆心P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a<0,(3x2+a)(2x+b)≥0在(a,b)上恒成立,则b-a的最大值为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)在△ABC中,若a=1,b=$\sqrt{3}$,B=120°.解三角形.
(2)在△ABC中,若a=3$\sqrt{3}$,b=2,C=150°.求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给定函数①$y={x^{\frac{1}{2}}}$,②$y=x+\frac{1}{x}$,③y=|x-1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知cos(α-β)=$\frac{12}{13}$.cos(α+β)=-$\frac{1}{13}$.求tanα•tanβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求下列各式的值:
(1)2$\sqrt{3}×\root{3}{{3\frac{3}{8}}}-\sqrt{12}$
(2)(log25+log4125)•$\frac{{{{log}_3}2}}{{{{log}_{\sqrt{3}}}5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$cos(-\frac{π}{3})•cos(π+\frac{π}{3})•cos(π-\frac{π}{3})$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{π}{6}$<α<$\frac{2π}{3}$,cos(α+$\frac{π}{3}$)=m(m≠0),则tan($\frac{2}{3}$π-α)-$\frac{\sqrt{{1-m}^{2}}}{m}$.

查看答案和解析>>

同步练习册答案