精英家教网 > 高中数学 > 题目详情

【题目】设min{mn}表示mn二者中较小的一个,已知函数f(x)=x2+8x+14,g(x)=(x>0),若x1∈[-5,a](a≥-4),x2∈(0,+∞),使得f(x1)=g(x2)成立,则a的最大值为

A.-4B.-3C.-2D.0

【答案】C

【解析】

先求得函数的解析式,并求出它的值域.根据二次函数图像的特点,对分成两类讨论,求出使得的值域是值域的子集成立的的范围,由此求得的最大值.

,解得,故当时,,当时,,所以.所以当时,函数的值域为,当时,的值域为,所以的值域为.函数,它的图像开口向上,对称轴为,则当时,函数上的值域为,是的子集,符合题意.时,函数上的值域为,它是的子集,故,解得.综上所述,满足题意的的取值范围是.所以的最大值为,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某赛季甲、乙两位运动员每场比赛得分的茎叶图如图所示.

(1)从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;

(2)试用统计学中的平均数、方差知识对甲、乙两位运动员的测试成绩进行分析.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数的图象相邻两条对称轴之间的距离为.

(1)求的值及函数的图象的对称中心;

(2)已知分别为Δ中角的对边,且满足,求Δ周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计,频率分布直方图如图所示:

1)估计这组数据的平均数(同一组中的数据以这组数据所在区间中点的值作代表);

2)现按分层抽样从质量为的芒果中随机抽取5个,再从这5个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;

3)某经销商来收购芒果,同一组中的数据以这组数据所在区间中点的值作代表,用样本估计总体,该种植园中还未摘下的芒果大约还有1000个,经销商提出以下两种收购方案:

方案①:所有芒果以9/千克收购

方案②:对质量低于250克的芒果以2/个收购,对质量高于或等于250克的芒果以3/个收购.通过计算确定种植园选择哪种方案获利更多.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的离心率为分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问100名性别不同的大学生是否爱好踢毽子,得到如下的列联表:

随机变量经计算,统计量K2的观测值k0≈4.762,参照附表,得到的正确结论是(  )

A. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”

B. 在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”

C. 有97.5%以上的把握认为“爱好该项运动与性别有关”

D. 有97.5%以上的把握认为“爱好该项运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:1(a>b>0)的右顶点为A(20),离心率为.

1)求椭圆C的方程;

2)设过点P(0,﹣2)的直线l与椭圆C相交于MN两点,当△OMN的面积最大时(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为了解某校高三学生质检数学成绩分布,从该校参加质检的学生数学成绩中抽取一个样本,并分成5组,绘成如图所示的频率分布直方图.若第一组至第五组数据的频率之比为,最后一组数据的频数是6

)估计该校高三学生质检数学成绩在125140分之间的概率,并求出样本容量;

)从样本中成绩在6595分之间的学生中任选两人,求至少有一人成绩在6580分之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体是圆锥的一部分,它是RtABC(及其内部)以一条直角边AB所在直线为旋转轴旋转150°得到的,ABBC2P是弧上一点,且EBAP.

1)求∠CBP的大小;

2)若QAE的中点,D为弧的中点,求二面角QBDP的余弦值;

3)直线AC上是否存在一点M,使得BDMQ四点共面?若存在,请说明点M的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案