精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知底面为菱形,为对角线的交点,底面

(1)求异面直线所成角的余弦值;

(2)求平面与平面所成锐二面角的余弦值.

【答案】(1);(2)

【解析】

根据底面为菱形得,利用线面垂直的性质可得,从而以为坐标原点建立空间直角坐标系;(1)利用异面直线所成角的空间向量求法可求得结果;(2)分别得到两个平面的法向量,根据二面角的空间向量求法可求得结果.

底面为菱形

底面底面

为坐标原点可建立如图所示的空间直角坐标系

(1)设为异面直线所成的角,又

异面直线所成的角的余弦值为:

(2)平面 平面的法向量取

设平面的法向量为,又

,令,则

为两个平面所成的锐二面角的平面角,则:

平面与平面所成锐二面角的余弦值为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有AB两个投资项目,投资两项目所获得利润分别是(万元),它们与投入资金(万元)的关系依次是:其中平方根成正比,且当4(万元)时1(万元),又成正比,当4(万元)时也是1(万元);某人甲有3万元资金投资.

)分别求出的函数关系式;

)请帮甲设计一个合理的投资方案,使其获利最大,并求出最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.

(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;

(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线上的点均在曲线外,且对上任意一点到直线的距离等于该点与曲线上点的距离的最小值.

(1)求动点的轨迹的方程;

(2)过点的直线与曲线交于不同的两点,过点的直线与曲线交于另一点,且直线过点,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南北朝时间著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异”.意思是:夹在两平行平面间的两个几何体,被平行于这两个平行平面的任何平面所载,若截得的两个截面面积总相等,则这两个几何体的体积相等.为计算球的体积,构造一个底面半径和高都与球半径相等的圆柱,然后再圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,运用祖暅原理可证明此几何体与半球体积相等(任何一个平面所载的两个截面面积都相等).将椭圆 轴旋转一周后得一橄榄状的几何体,类比上述方法,运用祖暅原理可求得其体积等于( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中:

定义在R上的函数f(x)在区间(-∞,0]上是增函数,在区间[0,+∞)上也是增函数,则函数f(x)R上是增函数;f(2)=f(-2),则函数f(x)不是奇函数;函数y=x-0.5(0,1)上的减函数;对应法则和值域相同的函数的定义域也相同;x0是二次函数y=f(x)的零点,m<x0<n,那么f(m)f(n)<0一定成立.

写出上述所有正确结论的序号:_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求满足的值;

(2)若函数是定义在上的奇函数.

①存在,使得不等式有解,求实数的取值范围;

②若函数满足,若对任意,不等式恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学习小组在暑期社会实践活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以30天计)的日销售价格(元)与时间(天)的函数关系近似满足为正常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:

(天)

10

20

25

30

(个)

110

120

125

120

已知第10天该商品的日销售收入为121.

I)求的值;

II)给出以下二种函数模型:

,②

请你根据上表中的数据,从中选择你认为最合适的一种函数来描述该商品的日销售量与时间的关系,并求出该函数的解析式;

III)求该商品的日销售收入(元)的最小值.

(函数,在区间上单调递减,在区间上单调递增.性质直接应用.

查看答案和解析>>

同步练习册答案